File size: 15,260 Bytes
9b431be
 
00067b9
eab903c
 
 
00067b9
 
ecd4c4b
00067b9
ddf0e4a
9b431be
 
00067b9
 
9b431be
00067b9
9b431be
00067b9
 
 
 
 
 
 
 
 
 
 
9b431be
eab903c
9b431be
f08b31b
aba8513
f08b31b
 
9b431be
60e66a3
eab903c
 
 
 
 
 
 
 
 
 
 
9b431be
60e66a3
00067b9
 
 
9b431be
 
00067b9
 
9b431be
00067b9
 
 
 
 
 
 
 
 
 
 
 
 
ecd4c4b
9b431be
 
00067b9
 
 
9b431be
00067b9
016b03f
00067b9
 
9b431be
00067b9
ecd4c4b
00067b9
 
9b431be
00067b9
9b431be
00067b9
9b431be
00067b9
ecd4c4b
9b431be
ecd4c4b
 
9b431be
00067b9
 
9b431be
00067b9
 
 
 
 
ecd4c4b
00067b9
 
9b431be
00067b9
 
9b431be
00067b9
 
9b431be
00067b9
 
9b431be
00067b9
 
 
9b431be
abbff0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68dc434
abbff0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b656fbd
abbff0d
 
 
 
00067b9
9b431be
00067b9
 
009eacc
00067b9
 
 
ca116f8
 
9b431be
00067b9
9b431be
009eacc
9b431be
 
00067b9
9b431be
ecd4c4b
9b431be
 
00067b9
9b431be
ecd4c4b
 
 
009eacc
ecd4c4b
9b431be
 
00067b9
9b431be
00067b9
9b431be
00067b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7880633
00067b9
 
027f293
00067b9
 
 
8f5fecf
00067b9
 
7880633
00067b9
 
027f293
00067b9
 
 
8f5fecf
00067b9
 
7880633
00067b9
 
027f293
00067b9
 
 
8f5fecf
00067b9
 
7880633
00067b9
 
027f293
00067b9
 
 
8f5fecf
00067b9
 
7880633
00067b9
 
027f293
00067b9
 
 
8f5fecf
00067b9
 
 
 
 
 
 
 
 
ecd4c4b
00067b9
 
 
 
9b431be
 
00067b9
 
 
 
 
9b431be
 
 
ecd4c4b
9b431be
 
 
00067b9
9b431be
00067b9
ecd4c4b
00067b9
 
 
9b431be
00067b9
9b431be
00067b9
9b431be
00067b9
 
 
 
 
 
 
 
 
9b431be
00067b9
9b431be
00067b9
7d152f8
00067b9
9b431be
 
00067b9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
---
library_name: transformers
language:
- yo
- ig
- ha
base_model:
- HuggingFaceTB/SmolLM2-360M
- saheedniyi/YarnGPT
pipeline_tag: text-to-speech
license: cc-by-nc-sa-4.0
---

# YarnGPT-local
![image/png](https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/logo.webp)

## Table of Contents

1. [Model Summary](#model-summary)  
2. [Model Description](#model-description)  
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)  
   - [Recommendations](#recommendations)  
4. [Speech Samples](#speech-samples)  
5. [Training](#training)  
6. [Future Improvements](#future-improvements)  
7. [Citation](#citation)  
8. [Credits & References](#credits--references)

## Model Summary

YarnGPT-local is a text-to-speech (TTS) model designed to synthesize Yoruba, Igbo and Hausa leveraging pure language modelling without external adapters or complex architectures, offering high-quality, natural, and culturally relevant speech synthesis for diverse applications.

<video controls width="600">
  <source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/YarnGPT-Local.mp4" type="video/mp4">
  Your browser does not support the video tag.
</video>

#### How to use (on Google Colab)
The model can generate audio on its own but its better to use a voice to prompt the model, there are about 10 voices supported by default:
- hausa_female1
- hausa_female2
- hausa_male1
- hausa_male2
- igbo_female1
- igbo_female2
- igbo_male2
- yoruba_female1
- yoruba_female2
- yoruba_male2

### Prompt YarnGPT-local
```python
# clone the YarnGPT repo to get access to the `audiotokenizer`
!git clone https://github.com/saheedniyi02/yarngpt.git


# install some necessary libraries
!pip install outetts==0.2.3 uroman

#import some important packages 
import os
import re
import json
import torch
import inflect
import random
import uroman as ur
import numpy as np
import torchaudio
import IPython
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
from yarngpt.audiotokenizer import AudioTokenizerForLocal


# download the wavtokenizer weights and config (to encode and decode the audio)
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt

# model path and wavtokenizer weight path (the paths are assumed based on Google colab, a different environment might save the weights to a different location).
hf_path="saheedniyi/YarnGPT-local"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"

# create the AudioTokenizer object 
audio_tokenizer=AudioTokenizerForLocal(
    hf_path,wav_tokenizer_model_path,wav_tokenizer_config_path
)

#load the model weights

model = AutoModelForCausalLM.from_pretrained(hf_path,torch_dtype="auto").to(audio_tokenizer.device)

# your input text
text="Ẹ maa rii pe lati bi ọsẹ meloo kan ni ijiroro ti wa lati ọdọ awọn ileeṣẹ wọnyi wi pe wọn fẹẹ ṣafikun si owo ipe pẹlu ida ọgọrun-un."

# creating a prompt, when creating a prompt, there is an optional `speaker_name` parameter
prompt=audio_tokenizer.create_prompt(text,"yoruba","yoruba_male2")

# tokenize the prompt
input_ids=audio_tokenizer.tokenize_prompt(prompt)

# generate output from the model, you can tune the `.generate` parameters as you wish
output  = model.generate(
            input_ids=input_ids,
            temperature=0.1,
            repetition_penalty=1.1,
            num_beams=4,
            max_length=4000,
        )

# convert the output to "audio codes"
codes=audio_tokenizer.get_codes(output)

# converts the codes to audio 
audio=audio_tokenizer.get_audio(codes)

# play the audio
IPython.display.Audio(audio,rate=24000)

# save the audio 
torchaudio.save(f"audio.wav", audio, sample_rate=24000)
```

### Simple News-Reader for Local languages
```python
# clone the YarnGPT repo to get access to the `audiotokenizer`
!git clone https://github.com/saheedniyi02/yarngpt.git


# install some necessary libraries
!pip install outetts uroman trafilatura pydub


#import important packages
import os
import re
import json
import torch
import inflect
import random
import requests
import trafilatura
import inflect
import uroman as ur
import numpy as np
import torchaudio
import IPython
from pydub import AudioSegment
from pydub.effects import normalize
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
from yarngpt.audiotokenizer import AudioTokenizer,AudioTokenizerForLocal

# download the `WavTokenizer` files
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt

tokenizer_path="saheedniyi/YarnGPT-local"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"


audio_tokenizer=AudioTokenizerForLocal(
    tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path
       )

model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device)

# Split text into chunks
def split_text_into_chunks(text, word_limit=25):
  sentences=[sentence.strip() for sentence in text.split('.') if sentence.strip()]
  chunks=[]
  for sentence in sentences:
    chunks.append(".")
    sentence_splitted=sentence.split(" ")
    num_words=len(sentence_splitted)
    start_index=0
    if num_words>word_limit:
      while start_index<num_words:
        end_index=min(num_words,start_index+word_limit)
        chunks.append(" ".join(sentence_splitted[start_index:start_index+word_limit]))
        start_index=end_index
    else:
      chunks.append(sentence)
  return chunks

# reduce the speed of the audio, results from the local languages are always fast
def speed_change(sound, speed=0.9):
    # Manually override the frame_rate. This tells the computer how many
    # samples to play per second
    sound_with_altered_frame_rate = sound._spawn(sound.raw_data, overrides={
         "frame_rate": int(sound.frame_rate * speed)
      })
     # convert the sound with altered frame rate to a standard frame rate
     # so that regular playback programs will work right. They often only
     # know how to play audio at standard frame rate (like 44.1k)
    return sound_with_altered_frame_rate.set_frame_rate(sound.frame_rate)


page=requests.get("https://alaroye.org/a-maa-too-fo-ipinle-ogun-mo-omo-egbe-okunkun-meje-lowo-ti-te-bayii-omolola/")
content=trafilatura.extract(page.text)
chunks=split_text_into_chunks(content)


all_codes=[]
for i,chunk in enumerate(chunks):
  print(i)
  print("\n")
  print(chunk)
  if chunk==".":
    #add silence for 0.5 seconds if we encounter a full stop
    all_codes.extend([453]*38)
  else:
    prompt=audio_tokenizer.create_prompt(chunk,lang="yoruba",speaker_name="yoruba_female2")
    input_ids=audio_tokenizer.tokenize_prompt(prompt)
    output  = model.generate(
            input_ids=input_ids,
            temperature=0.1,
            repetition_penalty=1.1,
            max_length=4000,
            num_beams=5,
        )
    codes=audio_tokenizer.get_codes(output)
    all_codes.extend(codes)


audio=audio_tokenizer.get_audio(all_codes)

#display the output
IPython.display.Audio(audio,rate=24000)

#save audio
torchaudio.save(f"news1.wav", audio, sample_rate=24000)

#convert file to an `AudioSegment` object for furher processing
audio_dub=AudioSegment.from_file("news1.wav")

# reduce audio speed: it reduces quality also
speed_change(audio_dub,0.9)
```


## Model Description

- **Developed by:** [Saheedniyi](https://linkedin.com/in/azeez-saheed)
- **Model type:** Text-to-Speech
- **Language(s) (NLP):** Igbo, Yoruba, Hausa--> Speech
- **Finetuned from:** [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M)
- **Repository:** [YarnGPT Github Repository](https://github.com/saheedniyi02/yarngpt)
- **Paper:** IN PROGRESS.
- **Demo:** 1) [Prompt YarnGPT-local notebook](https://colab.research.google.com/drive/1UWeirECQbjFGib1SqpiDdkzS1Bi_vi9i?usp=sharing)
            2) [Simple news reader: YarnGPT-local](https://colab.research.google.com/drive/1CMsLVsDaX2u4YUtV01fOvnDCtCC59bNe?usp=sharing)

#### Uses

Generate yoruba, igbo and hausa speech for experimental purposes.


#### Out-of-Scope Use

The model is not suitable for generating speech in languages other than Yoruba, Igbo and Hausa.


## Bias, Risks, and Limitations

- The model may not capture the full diversity of Nigerian accents and could exhibit biases based on the training dataset.
- The audio generated by the model are sometimes very fast and might need some post-processing to be done.
- The model doesn't take 'intonations' into account which sometimes leads to mispronounce meant of some words.
- Model doesn't respond to some prompt



#### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. Feedback and diverse training data contributions are encouraged.
## Speech Samples

Listen to samples generated by YarnGPT:

<div style="margin-top: 20px;">
<table style="width: 100%; border-collapse: collapse;">
  <thead>
    <tr>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Input</th>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Audio</th>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 10%;">Notes</th>
    </tr>
  </thead>
  <tbody>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">Ẹ maa rii pe lati bi ọsẹ meloo kan ni ijiroro ti wa lati ọdọ awọn ileeṣẹ wọnyi wi pe wọn fẹẹ ṣafikun si owo ipe pẹlu ida ọgọrun-un</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample1_yor.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: yoruba_male2</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;"> Iwadii fihan pe ọkan lara awọn eeyan meji yii lo ṣee si ja sinu tanki epo disu naa lasiko to n ṣiṣẹ lọwọ.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample2_yor.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: yoruba_female1</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;"> Shirun da gwamnati mai ci yanzu ta yi wajen kin bayani a akan halin da ake ciki a game da batun kidayar shi ne ya janyo wannan zargi da jam'iyyar ta Labour ta yi.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample1_hau.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: hausa_male2</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">A lokuta da dama yakan fito a matsayin jarumin da ke taimaka wa babban jarumi, kodayake a wasu fina-finan yakan fito a matsayin babban jarumi.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample2_hau.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: hausa_female1</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">Amụma ndị ọzọ o buru gụnyere inweta ihe zuru oke, ịmụta ụmụaka nye ndị na-achọ nwa</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample1_igb.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: igbo_female1</td>
    </tr>
  </tbody>
  </table>
</div>


## Training

#### Data
Trained on open source dataset on Yoruba, Igbo and Hausa.

#### Preprocessing 

Audio files were preprocessed and resampled to 24Khz and tokenized using [wavtokenizer](https://huggingface.co/novateur/WavTokenizer).

#### Training Hyperparameters
- **Number of epochs:** 5
- **batch_size:** 4
- **Scheduler:** linear schedule with warmup for 4 epochs, then linear decay to zero for the last epoch
- **Optimizer:** AdamW (betas=(0.9, 0.95),weight_decay=0.01)
- **Learning rate:** 1*10^-3

#### Hardware

- **GPUs:** 1 A100 (google colab: 30 hours)

#### Software

- **Training Framework:** Pytorch

## Future Improvements?
- Scaling up model size and training data
- Wrap the model around an API endpoint 
- Voice cloning.
- Potential expansion into speech-to-speech assistant models

## Citation [optional]

#### BibTeX:

```python
@misc{yarngpt2025,
  author = {Saheed Azeez},
  title = {YarnGPT: Nigerian-Accented English Text-to-Speech Model},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/SaheedAzeez/yarngpt}
}
```

#### APA:

```python
Saheed Azeez. (2025). YarnGPT-local: Nigerian languages Text-to-Speech Model. Hugging Face. Available at: https://huggingface.co/saheedniyi/YarnGPT-local
```


## Credits & References
- [OuteAI/OuteTTS-0.2-500M](https://huggingface.co/OuteAI/OuteTTS-0.2-500M/)
- [WavTokenizer](https://github.com/jishengpeng/WavTokenizer)
- [CTC Forced Alignment](https://pytorch.org/audio/stable/tutorials/ctc_forced_alignment_api_tutorial.html)
- [Voicera](https://huggingface.co/Lwasinam/voicera)