File size: 15,260 Bytes
9b431be 00067b9 eab903c 00067b9 ecd4c4b 00067b9 ddf0e4a 9b431be 00067b9 9b431be 00067b9 9b431be 00067b9 9b431be eab903c 9b431be f08b31b aba8513 f08b31b 9b431be 60e66a3 eab903c 9b431be 60e66a3 00067b9 9b431be 00067b9 9b431be 00067b9 ecd4c4b 9b431be 00067b9 9b431be 00067b9 016b03f 00067b9 9b431be 00067b9 ecd4c4b 00067b9 9b431be 00067b9 9b431be 00067b9 9b431be 00067b9 ecd4c4b 9b431be ecd4c4b 9b431be 00067b9 9b431be 00067b9 ecd4c4b 00067b9 9b431be 00067b9 9b431be 00067b9 9b431be 00067b9 9b431be 00067b9 9b431be abbff0d 68dc434 abbff0d b656fbd abbff0d 00067b9 9b431be 00067b9 009eacc 00067b9 ca116f8 9b431be 00067b9 9b431be 009eacc 9b431be 00067b9 9b431be ecd4c4b 9b431be 00067b9 9b431be ecd4c4b 009eacc ecd4c4b 9b431be 00067b9 9b431be 00067b9 9b431be 00067b9 7880633 00067b9 027f293 00067b9 8f5fecf 00067b9 7880633 00067b9 027f293 00067b9 8f5fecf 00067b9 7880633 00067b9 027f293 00067b9 8f5fecf 00067b9 7880633 00067b9 027f293 00067b9 8f5fecf 00067b9 7880633 00067b9 027f293 00067b9 8f5fecf 00067b9 ecd4c4b 00067b9 9b431be 00067b9 9b431be ecd4c4b 9b431be 00067b9 9b431be 00067b9 ecd4c4b 00067b9 9b431be 00067b9 9b431be 00067b9 9b431be 00067b9 9b431be 00067b9 9b431be 00067b9 7d152f8 00067b9 9b431be 00067b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
---
library_name: transformers
language:
- yo
- ig
- ha
base_model:
- HuggingFaceTB/SmolLM2-360M
- saheedniyi/YarnGPT
pipeline_tag: text-to-speech
license: cc-by-nc-sa-4.0
---
# YarnGPT-local

## Table of Contents
1. [Model Summary](#model-summary)
2. [Model Description](#model-description)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
- [Recommendations](#recommendations)
4. [Speech Samples](#speech-samples)
5. [Training](#training)
6. [Future Improvements](#future-improvements)
7. [Citation](#citation)
8. [Credits & References](#credits--references)
## Model Summary
YarnGPT-local is a text-to-speech (TTS) model designed to synthesize Yoruba, Igbo and Hausa leveraging pure language modelling without external adapters or complex architectures, offering high-quality, natural, and culturally relevant speech synthesis for diverse applications.
<video controls width="600">
<source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/YarnGPT-Local.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
#### How to use (on Google Colab)
The model can generate audio on its own but its better to use a voice to prompt the model, there are about 10 voices supported by default:
- hausa_female1
- hausa_female2
- hausa_male1
- hausa_male2
- igbo_female1
- igbo_female2
- igbo_male2
- yoruba_female1
- yoruba_female2
- yoruba_male2
### Prompt YarnGPT-local
```python
# clone the YarnGPT repo to get access to the `audiotokenizer`
!git clone https://github.com/saheedniyi02/yarngpt.git
# install some necessary libraries
!pip install outetts==0.2.3 uroman
#import some important packages
import os
import re
import json
import torch
import inflect
import random
import uroman as ur
import numpy as np
import torchaudio
import IPython
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
from yarngpt.audiotokenizer import AudioTokenizerForLocal
# download the wavtokenizer weights and config (to encode and decode the audio)
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt
# model path and wavtokenizer weight path (the paths are assumed based on Google colab, a different environment might save the weights to a different location).
hf_path="saheedniyi/YarnGPT-local"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"
# create the AudioTokenizer object
audio_tokenizer=AudioTokenizerForLocal(
hf_path,wav_tokenizer_model_path,wav_tokenizer_config_path
)
#load the model weights
model = AutoModelForCausalLM.from_pretrained(hf_path,torch_dtype="auto").to(audio_tokenizer.device)
# your input text
text="Ẹ maa rii pe lati bi ọsẹ meloo kan ni ijiroro ti wa lati ọdọ awọn ileeṣẹ wọnyi wi pe wọn fẹẹ ṣafikun si owo ipe pẹlu ida ọgọrun-un."
# creating a prompt, when creating a prompt, there is an optional `speaker_name` parameter
prompt=audio_tokenizer.create_prompt(text,"yoruba","yoruba_male2")
# tokenize the prompt
input_ids=audio_tokenizer.tokenize_prompt(prompt)
# generate output from the model, you can tune the `.generate` parameters as you wish
output = model.generate(
input_ids=input_ids,
temperature=0.1,
repetition_penalty=1.1,
num_beams=4,
max_length=4000,
)
# convert the output to "audio codes"
codes=audio_tokenizer.get_codes(output)
# converts the codes to audio
audio=audio_tokenizer.get_audio(codes)
# play the audio
IPython.display.Audio(audio,rate=24000)
# save the audio
torchaudio.save(f"audio.wav", audio, sample_rate=24000)
```
### Simple News-Reader for Local languages
```python
# clone the YarnGPT repo to get access to the `audiotokenizer`
!git clone https://github.com/saheedniyi02/yarngpt.git
# install some necessary libraries
!pip install outetts uroman trafilatura pydub
#import important packages
import os
import re
import json
import torch
import inflect
import random
import requests
import trafilatura
import inflect
import uroman as ur
import numpy as np
import torchaudio
import IPython
from pydub import AudioSegment
from pydub.effects import normalize
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
from yarngpt.audiotokenizer import AudioTokenizer,AudioTokenizerForLocal
# download the `WavTokenizer` files
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt
tokenizer_path="saheedniyi/YarnGPT-local"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"
audio_tokenizer=AudioTokenizerForLocal(
tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path
)
model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device)
# Split text into chunks
def split_text_into_chunks(text, word_limit=25):
sentences=[sentence.strip() for sentence in text.split('.') if sentence.strip()]
chunks=[]
for sentence in sentences:
chunks.append(".")
sentence_splitted=sentence.split(" ")
num_words=len(sentence_splitted)
start_index=0
if num_words>word_limit:
while start_index<num_words:
end_index=min(num_words,start_index+word_limit)
chunks.append(" ".join(sentence_splitted[start_index:start_index+word_limit]))
start_index=end_index
else:
chunks.append(sentence)
return chunks
# reduce the speed of the audio, results from the local languages are always fast
def speed_change(sound, speed=0.9):
# Manually override the frame_rate. This tells the computer how many
# samples to play per second
sound_with_altered_frame_rate = sound._spawn(sound.raw_data, overrides={
"frame_rate": int(sound.frame_rate * speed)
})
# convert the sound with altered frame rate to a standard frame rate
# so that regular playback programs will work right. They often only
# know how to play audio at standard frame rate (like 44.1k)
return sound_with_altered_frame_rate.set_frame_rate(sound.frame_rate)
page=requests.get("https://alaroye.org/a-maa-too-fo-ipinle-ogun-mo-omo-egbe-okunkun-meje-lowo-ti-te-bayii-omolola/")
content=trafilatura.extract(page.text)
chunks=split_text_into_chunks(content)
all_codes=[]
for i,chunk in enumerate(chunks):
print(i)
print("\n")
print(chunk)
if chunk==".":
#add silence for 0.5 seconds if we encounter a full stop
all_codes.extend([453]*38)
else:
prompt=audio_tokenizer.create_prompt(chunk,lang="yoruba",speaker_name="yoruba_female2")
input_ids=audio_tokenizer.tokenize_prompt(prompt)
output = model.generate(
input_ids=input_ids,
temperature=0.1,
repetition_penalty=1.1,
max_length=4000,
num_beams=5,
)
codes=audio_tokenizer.get_codes(output)
all_codes.extend(codes)
audio=audio_tokenizer.get_audio(all_codes)
#display the output
IPython.display.Audio(audio,rate=24000)
#save audio
torchaudio.save(f"news1.wav", audio, sample_rate=24000)
#convert file to an `AudioSegment` object for furher processing
audio_dub=AudioSegment.from_file("news1.wav")
# reduce audio speed: it reduces quality also
speed_change(audio_dub,0.9)
```
## Model Description
- **Developed by:** [Saheedniyi](https://linkedin.com/in/azeez-saheed)
- **Model type:** Text-to-Speech
- **Language(s) (NLP):** Igbo, Yoruba, Hausa--> Speech
- **Finetuned from:** [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M)
- **Repository:** [YarnGPT Github Repository](https://github.com/saheedniyi02/yarngpt)
- **Paper:** IN PROGRESS.
- **Demo:** 1) [Prompt YarnGPT-local notebook](https://colab.research.google.com/drive/1UWeirECQbjFGib1SqpiDdkzS1Bi_vi9i?usp=sharing)
2) [Simple news reader: YarnGPT-local](https://colab.research.google.com/drive/1CMsLVsDaX2u4YUtV01fOvnDCtCC59bNe?usp=sharing)
#### Uses
Generate yoruba, igbo and hausa speech for experimental purposes.
#### Out-of-Scope Use
The model is not suitable for generating speech in languages other than Yoruba, Igbo and Hausa.
## Bias, Risks, and Limitations
- The model may not capture the full diversity of Nigerian accents and could exhibit biases based on the training dataset.
- The audio generated by the model are sometimes very fast and might need some post-processing to be done.
- The model doesn't take 'intonations' into account which sometimes leads to mispronounce meant of some words.
- Model doesn't respond to some prompt
#### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. Feedback and diverse training data contributions are encouraged.
## Speech Samples
Listen to samples generated by YarnGPT:
<div style="margin-top: 20px;">
<table style="width: 100%; border-collapse: collapse;">
<thead>
<tr>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Input</th>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Audio</th>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 10%;">Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Ẹ maa rii pe lati bi ọsẹ meloo kan ni ijiroro ti wa lati ọdọ awọn ileeṣẹ wọnyi wi pe wọn fẹẹ ṣafikun si owo ipe pẹlu ida ọgọrun-un</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample1_yor.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: yoruba_male2</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;"> Iwadii fihan pe ọkan lara awọn eeyan meji yii lo ṣee si ja sinu tanki epo disu naa lasiko to n ṣiṣẹ lọwọ.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample2_yor.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: yoruba_female1</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;"> Shirun da gwamnati mai ci yanzu ta yi wajen kin bayani a akan halin da ake ciki a game da batun kidayar shi ne ya janyo wannan zargi da jam'iyyar ta Labour ta yi.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample1_hau.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: hausa_male2</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">A lokuta da dama yakan fito a matsayin jarumin da ke taimaka wa babban jarumi, kodayake a wasu fina-finan yakan fito a matsayin babban jarumi.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample2_hau.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: hausa_female1</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Amụma ndị ọzọ o buru gụnyere inweta ihe zuru oke, ịmụta ụmụaka nye ndị na-achọ nwa</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT-local/resolve/main/audio/Sample1_igb.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1,num_beams=4), voice: igbo_female1</td>
</tr>
</tbody>
</table>
</div>
## Training
#### Data
Trained on open source dataset on Yoruba, Igbo and Hausa.
#### Preprocessing
Audio files were preprocessed and resampled to 24Khz and tokenized using [wavtokenizer](https://huggingface.co/novateur/WavTokenizer).
#### Training Hyperparameters
- **Number of epochs:** 5
- **batch_size:** 4
- **Scheduler:** linear schedule with warmup for 4 epochs, then linear decay to zero for the last epoch
- **Optimizer:** AdamW (betas=(0.9, 0.95),weight_decay=0.01)
- **Learning rate:** 1*10^-3
#### Hardware
- **GPUs:** 1 A100 (google colab: 30 hours)
#### Software
- **Training Framework:** Pytorch
## Future Improvements?
- Scaling up model size and training data
- Wrap the model around an API endpoint
- Voice cloning.
- Potential expansion into speech-to-speech assistant models
## Citation [optional]
#### BibTeX:
```python
@misc{yarngpt2025,
author = {Saheed Azeez},
title = {YarnGPT: Nigerian-Accented English Text-to-Speech Model},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/SaheedAzeez/yarngpt}
}
```
#### APA:
```python
Saheed Azeez. (2025). YarnGPT-local: Nigerian languages Text-to-Speech Model. Hugging Face. Available at: https://huggingface.co/saheedniyi/YarnGPT-local
```
## Credits & References
- [OuteAI/OuteTTS-0.2-500M](https://huggingface.co/OuteAI/OuteTTS-0.2-500M/)
- [WavTokenizer](https://github.com/jishengpeng/WavTokenizer)
- [CTC Forced Alignment](https://pytorch.org/audio/stable/tutorials/ctc_forced_alignment_api_tutorial.html)
- [Voicera](https://huggingface.co/Lwasinam/voicera) |