File size: 1,384 Bytes
0ef969b 9a2462e 0ef969b 9a2462e 0ef969b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
language:
- es
- en
- multilingual
license: mit
tags:
- codeswitching
- spanish-english
- sentiment-analysis
datasets:
- lince
---
# codeswitch-spaeng-sentiment-analysis-lince
This is a pretrained model for **Sentiment Analysis** of `spanish-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home)
This model is trained for this below repository.
[https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch)
To install codeswitch:
```
pip install codeswitch
```
## Sentiment Analysis of Spanish-English Code-Mixed Data
* **Method-1**
```py
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-spaeng-sentiment-analysis-lince")
model = AutoModelForSequenceClassification.from_pretrained("sagorsarker/codeswitch-spaeng-sentiment-analysis-lince")
nlp = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
sentence = "El perro le ladraba a La Gatita .. .. lol #teamlagatita en las playas de Key Biscayne este Memorial day"
nlp(sentence)
```
* **Method-2**
```py
from codeswitch.codeswitch import SentimentAnalysis
sa = SentimentAnalysis('spa-eng')
sentence = "El perro le ladraba a La Gatita .. .. lol #teamlagatita en las playas de Key Biscayne este Memorial day"
result = sa.analyze(sentence)
print(result)
```
|