sage-bergerson's picture
Update README.md
dbe9ac9 verified
---
library_name: transformers
language:
- en
license: cc-by-sa-4.0
base_model: openai/whisper-large
tags:
- generated_from_trainer
datasets:
- sage-bergerson/edacc_processed
metrics:
- wer
model-index:
- name: Whisper Large EdAcc V2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: EdAcc
type: sage-bergerson/edacc_processed
args: 'config: en, split: train'
metrics:
- name: Wer
type: wer
value: 0.5855270257403117
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large EdAcc V2
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the EdAcc dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6378
- Wer: 0.5855
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.1515 | 0.3247 | 100 | 0.7869 | 0.3055 |
| 0.6272 | 0.6494 | 200 | 0.6171 | 0.4607 |
| 0.5614 | 0.9740 | 300 | 0.5925 | 0.6110 |
| 0.43 | 1.2987 | 400 | 0.5868 | 0.5105 |
| 0.4576 | 1.6234 | 500 | 0.5844 | 0.6095 |
| 0.4727 | 1.9481 | 600 | 0.5784 | 0.6796 |
| 0.3274 | 2.2727 | 700 | 0.6094 | 0.5416 |
| 0.2862 | 2.5974 | 800 | 0.6027 | 0.5609 |
| 0.2908 | 2.9221 | 900 | 0.6107 | 0.4607 |
| 0.2221 | 3.2468 | 1000 | 0.6378 | 0.5855 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1