--- library_name: transformers language: - en license: cc-by-sa-4.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - sage-bergerson/edacc_processed metrics: - wer model-index: - name: Whisper Large EdAcc V2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: EdAcc type: sage-bergerson/edacc_processed args: 'config: en, split: train' metrics: - name: Wer type: wer value: 0.5855270257403117 --- # Whisper Large EdAcc V2 This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the EdAcc dataset. It achieves the following results on the evaluation set: - Loss: 0.6378 - Wer: 0.5855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.1515 | 0.3247 | 100 | 0.7869 | 0.3055 | | 0.6272 | 0.6494 | 200 | 0.6171 | 0.4607 | | 0.5614 | 0.9740 | 300 | 0.5925 | 0.6110 | | 0.43 | 1.2987 | 400 | 0.5868 | 0.5105 | | 0.4576 | 1.6234 | 500 | 0.5844 | 0.6095 | | 0.4727 | 1.9481 | 600 | 0.5784 | 0.6796 | | 0.3274 | 2.2727 | 700 | 0.6094 | 0.5416 | | 0.2862 | 2.5974 | 800 | 0.6027 | 0.5609 | | 0.2908 | 2.9221 | 900 | 0.6107 | 0.4607 | | 0.2221 | 3.2468 | 1000 | 0.6378 | 0.5855 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1