File size: 1,695 Bytes
a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd ef74b67 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd 7beedd8 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 a51a9dd af59147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
library_name: transformers
license: apache-2.0
datasets:
- conll2003
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
pipeline_tag: token-classification
---
# bert-base-cased-finetuned-conll2003-ner-v2
BERT ("bert-base-cased") finetuned on CoNLL-2003 (Conference on Computational Natural Language Learning).
The model performs named entity recognition (NER). It pertains to section 2 of chapter 7 of the Hugging Face "NLP Course" (https://huggingface.co/learn/nlp-course/chapter7/2).
It was trained using a custom PyTorch loop with Hugging Face Accelerate.
Code: https://github.com/sambitmukherjee/huggingface-notebooks/blob/main/course/en/chapter7/section2_pt.ipynb
Experiment tracking: https://wandb.ai/sadhaklal/bert-base-cased-finetuned-conll2003-ner-v2
## Usage
```
from transformers import pipeline
model_checkpoint = "sadhaklal/bert-base-cased-finetuned-conll2003-ner-v2"
token_classifier = pipeline("token-classification", model=model_checkpoint, aggregation_strategy="simple")
print(token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn."))
```
## Dataset
From the dataset page:
> The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups.
Examples: https://huggingface.co/datasets/conll2003/viewer
## Metrics
Accuracy on the 'validation' split of CoNLL-2003: 0.9858
Precision on the 'validation' split of CoNLL-2003: 0.9243
Recall on the 'validation' split of CoNLL-2003: 0.947
F1 on the 'validation' split of CoNLL-2003: 0.9355
|