File size: 12,469 Bytes
df1c825 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x797d5f77dfc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x797d5f77e050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x797d5f77e0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x797d5f77e170>", "_build": "<function ActorCriticPolicy._build at 0x797d5f77e200>", "forward": "<function ActorCriticPolicy.forward at 0x797d5f77e290>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x797d5f77e320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x797d5f77e3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x797d5f77e440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x797d5f77e4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x797d5f77e560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x797d5f77e5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x797d5f91bf40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705657057512057729, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAIAHA7/hAZ85C+gTv2B9Qjzb2BK/SI+qvG6a/L7L9Mc7i8rzvrR1ybrsW7y+YtmQPHyF+76UZWA7o4QLvxKyNruj6i2/njOavI+hJ78rOu660q8Gv1Pca7xQegy/OwBROynF+77zBrE7I6AYv6FkzbnC89y+VWObuznaz74UUWK8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0BAQE9ECvHMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAQEHdGiHqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAQDV6NVBEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAQCfQKKHgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgVY6nzg/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgUgr6LwXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgThYNiH7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgSqlxffGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgR1HOKO1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgRBNVR1pdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgQAMlTm5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgPK+zt1IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgOMVDa4+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgNSqEOAidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgMZxaPjodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgLeyiVSodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgKrR0EHMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgJ0W/JvHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgJFLFn7IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BAgIfSx7iRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9yYXwb2ldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9xeb/ffodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9wcxTKkmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9vhIe5nUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9ujynUDudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9tqQA+6idX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9skIHC40dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9ro4dZJTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9qmj0tiAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9png5zYFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9oppeu3ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9npr1uiwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9mxt52QodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9l2NedCmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9k/8l5WzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BC9kGZ/kNndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJRMWXTmXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJQN0/4ZddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJPLowEhadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJOTaCcwydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJNYjjaPCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJMfRu0kXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJLY5DJEIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJKdpZfUndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJJaA4GUwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJIacZtN0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJHck+otMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJGcnVoYfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJFlkH2RJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJEqUeMhpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJD0Dlo12dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDJC4jKPn0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUI3aSLZSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUH5Jsfq5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUG2b5M11dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUF72L5ymdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUE/8l5WzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUEH+qBEsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUDB/I8yOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUCG34Kx+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUBHLA57xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDUAIQe3hGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDT/KZDzAfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDT+KsMiKSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDT9Sde6ZqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDT8q4H5aedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDT8D0UXYUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDT7L+xW1ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfomPYFq0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfnn+yZ8bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfmlqJuVHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDflpwjt5VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfku6ErXldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfj1wo9cKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfiwr1/UfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfh1cMVk+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfgxzq8lHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDffyXlbNbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfe0PYnOTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfd0aIeo2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfc8La24NdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfcAq/dqMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfcFpwjt5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDfbY9Pk7wdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrJxvNu+AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrI065oXbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrHyup0fYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrG3OObRXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrF6JIlMRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrFDF6zE8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrD9fkWAPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrDCgsbvPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrB+4LCvYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrA/cFhXsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDrABcRlH0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDq/BnBciXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDq+JpFkQPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDq9OIqLCOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDq8X3xnWbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDq7cfvF3qdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |