File size: 5,663 Bytes
daef20d
996a623
 
 
 
 
 
 
 
 
daef20d
996a623
 
 
 
daef20d
996a623
daef20d
 
 
4960150
996a623
212b061
daef20d
 
fafb9ee
daef20d
567a4b2
daef20d
e7c2d76
 
 
 
 
8d693f6
e7c2d76
 
 
1e9c6e8
07d3cd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e9c6e8
 
c89fd72
1e9c6e8
462e45d
 
47cd67d
 
 
 
 
e7c2d76
1e9c6e8
 
daef20d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
language:
- da
- no
- nb
- nn
- sv
- fo
- is
license: mit
datasets:
- dane
- norne
- wikiann
- suc3.0
model-index:
- name: nbailab-base-ner-scandi
  results:
  - task:
      type: token-classification
      name: Token Classification
widget:
- "Hans er en professor på Københavns Universitetet i København, og han er en rigtig københavner. Hans kat, altså Hans' kat, Lisa, er supersød. Han fik købt en Mona Lisa på tilbud i Netto og gav den til hans kat, og nu er Mona Lisa'en Lisa's kæreste eje. Hans er med hans bror Peter, og de besluttede, at Peterskirken skulle have fint besøg af Peter og hans ven Hans. Men nu har de begge Corona."
---

# ScandiNER - Named Entity Recognition model for Scandinavian Languages

This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) for Named Entity Recognition for Danish, Norwegian (both Bokmål and Nynorsk), Swedish, Icelandic and Faroese. It has been fine-tuned on the concatenation of [DaNE](https://aclanthology.org/2020.lrec-1.565/), [NorNE](https://arxiv.org/abs/1911.12146), [SUC 3.0](https://spraakbanken.gu.se/en/resources/suc3) and the Icelandic and Faroese parts of the [WikiANN](https://arxiv.org/abs/1902.00193) dataset. It also works reasonably well on English sentences, given the fact that the pretrained model is also trained on English data along with Scandinavian languages.

The model will predict the following four entities:

| **Tag** | **Name** | **Description** |
| :------ | :------- | :-------------- |
| `PER` | Person | The name of a person (e.g., *Peter* and *Mohammed*) |
| `LOC` | Location | The name of a location (e.g., *Germany* and *Den Røde Plads*) |
| `ORG` | Organisation | The name of an organisation (e.g., *Netto* and *Landsbankinn*) |
| `MISC` | Miscellaneous | A named entity of a different kind (e.g., *British Pound* or *Mona Lisa*) |


## Use

You can use this model in your scripts as follows:

```python
>>> from transformers import pipeline
>>> import pandas as pd
>>> ner = pipeline(task='ner', model='saattrupdan/nbailab-base-ner-scandi', aggregation_strategy='first')
>>> result = ner('Borghild kjøper seg inn i Bunnpris')
>>> pd.DataFrame.from_records(result)
  entity_group     score      word  start  end
0          PER  0.981257  Borghild      0    8
1          ORG  0.974099  Bunnpris     26   34
```


## Performance

The following is the Micro-F1 NER performance on Scandinavian NER test datasets, compared with the current state-of-the-art. The models have been evaluated on the test set along with 9 bootstrapped versions of it, with the mean and 95% confidence interval shown here:

| **Model ID** | **DaNE** | **NorNE-NB** | **NorNE-NN** | **SUC 3.0** | **WikiANN-IS** | **WikiANN-FO** | **Average** |
| :----------- | :------: | :----------: | :----------: | :---------: | :------------: | :------------: | :---------: |
| saattrupdan/nbailab-base-ner-scandi | 87.44 ± 0.81 | 91.06 ± 0.26 | 90.42 ± 0.61 | 88.37 ± 0.17 | 88.61 ± 0.41 | 90.22 ± 0.46 | **89.08 ± 0.46** |
| chcaa/da\_dacy\_large\_trf | 83.61 ± 1.18 | 78.90 ± 0.49 | 72.62 ± 0.58 | 53.35 ± 0.17 | 50.57 ± 0.46 | 51.72 ± 0.52 | **63.00 ± 0.57** |
| RecordedFuture/Swedish-NER | 64.09 ± 0.97 | 61.74 ± 0.50 | 56.67 ± 0.79 | 66.60 ± 0.27 | 34.54 ± 0.73 | 42.16 ± 0.83 | **53.32 ± 0.69** |
| Maltehb/danish-bert-botxo-ner-dane | 69.25 ± 1.17 | 60.57 ± 0.27 | 35.60 ± 1.19 | 38.37 ± 0.26 | 21.00 ± 0.57 | 27.88 ± 0.48 | **40.92 ± 0.64** |
| Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane | 70.41 ± 1.19 | 48.76 ± 0.70 | 27.58 ± 0.61 | 35.39 ± 0.38 | 26.22 ± 0.52 | 28.30 ± 0.29 | **39.70 ± 0.61** |
| radbrt/nb\_nocy\_trf | 56.82 ± 1.63 | 68.20 ± 0.75 | 69.22 ± 1.04 | 31.63 ± 0.29 | 20.32 ± 0.45 | 12.91 ± 0.50 | **38.08 ± 0.75** | 


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 90135.90000000001
- num_epochs: 1000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Micro F1 | Micro F1 No Misc |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------------:|
| 0.6682        | 1.0   | 2816  | 0.0872          | 0.6916   | 0.7306           |
| 0.0684        | 2.0   | 5632  | 0.0464          | 0.8167   | 0.8538           |
| 0.0444        | 3.0   | 8448  | 0.0367          | 0.8485   | 0.8783           |
| 0.0349        | 4.0   | 11264 | 0.0316          | 0.8684   | 0.8920           |
| 0.0282        | 5.0   | 14080 | 0.0290          | 0.8820   | 0.9033           |
| 0.0231        | 6.0   | 16896 | 0.0283          | 0.8854   | 0.9060           |
| 0.0189        | 7.0   | 19712 | 0.0253          | 0.8964   | 0.9156           |
| 0.0155        | 8.0   | 22528 | 0.0260          | 0.9016   | 0.9201           |
| 0.0123        | 9.0   | 25344 | 0.0266          | 0.9059   | 0.9233           |
| 0.0098        | 10.0  | 28160 | 0.0280          | 0.9091   | 0.9279           |
| 0.008         | 11.0  | 30976 | 0.0309          | 0.9093   | 0.9287           |
| 0.0065        | 12.0  | 33792 | 0.0313          | 0.9103   | 0.9284           |
| 0.0053        | 13.0  | 36608 | 0.0322          | 0.9078   | 0.9257           |
| 0.0046        | 14.0  | 39424 | 0.0343          | 0.9075   | 0.9256           |


### Framework versions

- Transformers 4.10.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3