s3nh commited on
Commit
a624b61
β€’
1 Parent(s): f85129f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ language:
6
+ - zh
7
+ ---
8
+
9
+
10
+ ## Original model card
11
+
12
+ Buy me a coffee if you like this project ;)
13
+ <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
14
+
15
+ #### Description
16
+
17
+ GGML Format model files for [This project](https://huggingface.co/arogov/llama2_13b_chat_uncensored).
18
+
19
+
20
+ ### inference
21
+
22
+
23
+ ```python
24
+
25
+ import ctransformers
26
+
27
+ from ctransformers import AutoModelForCausalLM
28
+
29
+ model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
30
+ gpu_layers=32, model_type="llama")
31
+
32
+ manual_input: str = "Tell me about your last dream, please."
33
+
34
+
35
+ llm(manual_input,
36
+ max_new_tokens=256,
37
+ temperature=0.9,
38
+ top_p= 0.7)
39
+
40
+ ```
41
+
42
+
43
+
44
+ # Original model card
45
+
46
+
47
+
48
+ # Overview
49
+ Fine-tuned [Llama-2 13B](https://huggingface.co/TheBloke/Llama-2-13B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
50
+ Used QLoRA for fine-tuning. Trained for one epoch on a two 24GB GPU (NVIDIA RTX 3090) instance, took ~26.5 hours to train.
51
+ ```
52
+ {'train_runtime': 95229.7197, 'train_samples_per_second': 0.363, 'train_steps_per_second': 0.091, 'train_loss': 0.5828390517308127, 'epoch': 1.0}
53
+ 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 8649/8649 [26:27:09<00:00, 11.01s/it]
54
+ Training complete, adapter model saved in models//llama2_13b_chat_uncensored_adapter
55
+ ```
56
+
57
+ The version here is the fp16 HuggingFace model.
58
+
59
+ ## GGML & GPTQ versions
60
+ Thanks to [TheBloke](https://huggingface.co/TheBloke), he has created the GGML and GPTQ versions:
61
+ * https://huggingface.co/TheBloke/Llama-2-13B-GGML
62
+ * https://huggingface.co/TheBloke/Llama-2-13B-GPTQ
63
+
64
+ # Prompt style
65
+ The model was trained with the following prompt style:
66
+ ```
67
+ ### HUMAN:
68
+ Hello
69
+
70
+ ### RESPONSE:
71
+ Hi, how are you?
72
+
73
+ ### HUMAN:
74
+ I'm fine.
75
+
76
+ ### RESPONSE:
77
+ How can I help you?
78
+ ...
79
+ ```
80
+
81
+ # Training code
82
+ Code used to train the model is available [here](https://github.com/georgesung/llm_qlora).
83
+
84
+ To reproduce the results:
85
+ ```
86
+ git clone https://github.com/georgesung/llm_qlora
87
+ cd llm_qlora
88
+ pip install -r requirements.txt
89
+ python train.py configs/llama2_13b_chat_uncensored.yaml
90
+ ```
91
+
92
+ # Fine-tuning guide
93
+ https://georgesung.github.io/ai/qlora-ift/