metadata
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral-instruct
results: []
datasets:
- FreedomIntelligence/Evol-Instruct-Chinese-GPT4
language:
- zh
- en
pipeline_tag: text-generation
mistral-instruct
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the FreedomIntelligence/Evol-Instruct-Chinese-GPT4 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9519
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0979 | 0.0 | 1 | 1.0964 |
0.9735 | 0.25 | 82 | 0.9782 |
0.9577 | 0.5 | 164 | 0.9619 |
0.9281 | 0.75 | 246 | 0.9536 |
0.8988 | 1.0 | 328 | 0.9519 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.0