Tora-7B-v0.1 / README.md
ryota39's picture
Update README.md
4045f0d verified
|
raw
history blame
3.55 kB
---
license: cc-by-nc-4.0
---
## License
非商用ライセンスで公開します。
## Chat Vector
```
Tora-7B-v0.1 = NTQAI/chatntq-ja-7b-v1.0 + (openchat/openchat-3.5-0106 - mistralai/Mistral-7B-v0.1)
```
## 実装
@jovyan様の実装を参考に下記のコードでモデルを作成しました。
```python
import torch
from transformers import AutoModelForCausalLM
def build_chat_vector_model(
base_model_name,
inst_model_name,
target_model_name,
skip_layers,
):
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
inst_model = AutoModelForCausalLM.from_pretrained(
inst_model_name,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
target_model = AutoModelForCausalLM.from_pretrained(
target_model_name,
torch_dtype=torch.bfloat16,
device_map="cuda",
)
# 英語ベースモデル
for k, v in base_model.state_dict().items():
print(k, v.shape)
# 日本語継続事前学習モデル
for k, v in target_model.state_dict().items():
print(k, v.shape)
# 除外対象
skip_layers = ["model.embed_tokens.weight", "lm_head.weight"]
for k, v in target_model.state_dict().items():
# layernormも除外
if (k in skip_layers) or ("layernorm" in k):
continue
chat_vector = inst_model.state_dict()[k] - base_model.state_dict()[k]
new_v = v + chat_vector.to(v.device)
v.copy_(new_v)
target_model.save_pretrained("./chat_model")
return
if __name__ == '__main__':
base_model_name = "mistralai/Mistral-7B-v0.1"
inst_model_name = "openchat/openchat-3.5-0106"
target_model_name = "NTQAI/chatntq-ja-7b-v1.0"
skip_layers = ["model.embed_tokens.weight", "lm_head.weight"]
build_chat_vector_model(
base_model_name=base_model_name,
inst_model_name=inst_model_name,
target_model_name=target_model_name,
skip_layers=skip_layers
)
```
## ベンチマーク (Japanese MT bench)
- single turnのみ評価
|model|category|score|ver|
|:---|:---|:---|:---|
|Tora-7B-v0.1|Writing|5.4|single-turn|
|Tora-7B-v0.1|Roleplay|6.6|single-turn|
|Tora-7B-v0.1|Reasoning|7.3|single-turn|
|Tora-7B-v0.1|Math|3.5|single-turn|
|Tora-7B-v0.1|Coding|4.7|single-turn|
|Tora-7B-v0.1|Extraction|6.3|single-turn|
|Tora-7B-v0.1|STEM|7.2|single-turn|
|Tora-7B-v0.1|Humanities|8.5|single-turn|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/651e3f30ca333f3c8df692b8/tuFTNH1t65lqgpnS3TuiA.png)
## ベンチマーク (Nejumi leaderboard)
- runs.summary["mtbench_leaderboard_table"]の結果を転記
|model|category|score|
|:---|:---|:---|
|Tora-7B-v0.1|Writing|7.55|
|Tora-7B-v0.1|Roleplay|7.5|
|Tora-7B-v0.1|Reasoning|4.35|
|Tora-7B-v0.1|Math|2.95|
|Tora-7B-v0.1|Coding|3.7|
|Tora-7B-v0.1|Extraction|7.0|
|Tora-7B-v0.1|STEM|7.85|
|Tora-7B-v0.1|Humanities|9.65|
|Tora-7B-v0.1|AVG_mtbench|6.319|
- runs.summary["jaster_radar_table"]の結果を転記
|model|category|score|
|:---|:---|:---|
|Tora-7B-v0.1|NLI|0.588|
|Tora-7B-v0.1|QA|0.1708|
|Tora-7B-v0.1|RC|0.798|
|Tora-7B-v0.1|MC|0.25|
|Tora-7B-v0.1|EL|0.0|
|Tora-7B-v0.1|FA|0.1359|
|Tora-7B-v0.1|MR|0.2|
## 謝辞
ChatVectorの記事を執筆してくださった@jovyan様に深くお礼申し上げます。
## 参考
[Chat Vectorを使って日本語LLMをチャットモデルに改造する](https://qiita.com/jovyan/items/ee6affa5ee5bdaada6b4)