ryefoxlime commited on
Commit
2842a14
1 Parent(s): c7308c1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +223 -0
README.md ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ metrics:
5
+ - accuracy
6
+ library_name: keras
7
+ tags:
8
+ - medical
9
+ ---
10
+ # ryefoxlime/PneumoniaDetection
11
+
12
+ ## Model Details
13
+ I have developed a robust model that utilizes transfer learning and the powerful ResNet50V2 architecture to effectively classify chest X-ray images into two categories: pneumonia and normal. This model demonstrates high accuracy and generalizability, making it a promising tool for assisting in pneumonia diagnosis.
14
+
15
+ ### Model Description
16
+ The ResNet50V2:
17
+ ResNet50V2 is a deep convolutional neural network (CNN) architecture, part of the ResNet (Residual Networks) family. It's known for its depth, utilizing residual blocks that help address the vanishing gradient problem during training. The "V2" signifies an improvement over the original ResNet50, incorporating tweaks to enhance performance.
18
+
19
+ Transfer Learning:
20
+ Transfer learning involves leveraging a pre-trained model's knowledge on a large dataset and applying it to a different but related task. For our use case, ResNet50V2, which has been trained on a diverse dataset, is adapted to classify pneumonia-related images.
21
+
22
+ Image Classification:
23
+ The core task of the model is to categorize images into two classes: "affected by pneumonia" and "normal." This binary classification is crucial for diagnosing medical conditions based on visual information in images.
24
+
25
+ Model Training:
26
+ During training, the pre-trained ResNet50V2 model is used as a feature extractor. The existing weights are frozen, preventing further training on the original dataset, and a new classifier tailored to this specific task is added. This new classifier is trained using the labeled dataset of pneumonia and normal images.
27
+
28
+ Loss Function and Optimization:
29
+ To guide the training process, a loss function is employed to measure the difference between predicted and actual labels. Common choices for image classification tasks include categorical cross-entropy. An optimizer, such as stochastic gradient descent (SGD) or Adam. In our case we have used Adam as our optimier of choice, which is used to adjust the model's weights based on the calculated loss.
30
+
31
+ Evaluation:
32
+ The model's performance is assessed using a separate dataset not seen during training. Metrics like accuracy, precision, recall, and F1-score are often used to gauge how well the model generalizes to new, unseen data.
33
+
34
+ Deployment:
35
+ Once the model demonstrates satisfactory performance, it can be deployed for real-world use. This involves integrating it into a system or application where it can receive new images, make predictions, and aid in the diagnosis of pneumonia.
36
+
37
+
38
+
39
+ - **Developed by:** [Nitin Kausik Remella](https://github.com/OkabeRintaro10)
40
+ - **Model type:** Sequential
41
+ - **Language(s):** Python
42
+ - **Finetuned from model:** ResNet50V2
43
+
44
+ ### Model Sources [optional]
45
+
46
+
47
+ - **Repository:** [More Information Needed]
48
+ - **Paper [optional]:** [A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2
49
+ ](https://pubmed.ncbi.nlm.nih.gov/32501424/)
50
+ - **Demo [optional]:** [More Information Needed]
51
+
52
+ ## Uses
53
+ This tool is used to assist medical professional in cross-validation of the diagnosis
54
+
55
+ ### Out-of-Scope Use
56
+
57
+ This model is in no form or way to replace an actual medical professional but only in assist them
58
+
59
+
60
+ ## Bias, Risks, and Limitations
61
+
62
+ The model cant handle 4d images such as CT scans
63
+
64
+ ## How to Get Started with the Model
65
+
66
+ ```
67
+ import tensorflow as tf
68
+ from tensorflow import keras
69
+ from keras import models
70
+ model = load_model('/path/to/model')
71
+ model.evaluate('/path/to/image')
72
+ ```
73
+
74
+ ## Training Details
75
+
76
+ ### Training Data
77
+
78
+ Downloading the dataset from [kaggle](https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia)
79
+ split the data into 3 parts
80
+ - train
81
+ - test
82
+ - val
83
+
84
+ code to split into 25% 75% split of training data
85
+ ```
86
+ # Creating Val folder
87
+ os.chdir('datasets/chest_xray/chest_xray/')
88
+ if os.path.isdir('val/NORMAL') is False:
89
+ os.makedirs('val/NORMAL')
90
+ os.makedirs('val/PNEUMONIA')
91
+
92
+ # Moving Images from train folder to val folder
93
+ source = 'chest_xray/train/PNEUMONIA/'
94
+ dest = 'datasets/chest_xray/chest_xray/val/PNEUMONIA'
95
+ files = os.listdir(source)
96
+ np_of_files = len(files) // 25
97
+ for file_name in random.sample(files, np_of_files):
98
+ shutil.move(os.path.join(source, file_name), dest)
99
+
100
+ # Moving Normal Images from train folder to val folder
101
+ source = 'datasets/chest_xray/chest_xray/train/NORMAL/'
102
+ dest = 'datasets/chest_xray/chest_xray/val/NORMAL'
103
+ files = os.listdir(source)
104
+ np_of_files = len(files) // 25
105
+ for file_name in random.sample(files, np_of_files):
106
+ shutil.move(os.path.join(source, file_name), dest)
107
+ ```
108
+
109
+ ### Training Procedure
110
+ The training of the data requires ResNet50V2 to start as the base model and then using further layers to extract more information and to help in classification
111
+
112
+ #### Building the model
113
+ ```
114
+ from keras.applications import VGG16, ResNet50V2
115
+
116
+ base_model = ResNet50V2(
117
+ include_top=False, input_shape=(224, 224, 3), weights="imagenet"
118
+ )
119
+ base_model.trainable = False
120
+
121
+ def CreateModel():
122
+ model = Sequential()
123
+ model.add(base_model)
124
+ # model.add(Conv2D(filters=32, kernel_size=3, strides=(2, 2)))
125
+ model.add(AveragePooling2D(pool_size=(2, 2), strides=2))
126
+ model.add(Flatten())
127
+ model.add(Dense(256, activation="relu"))
128
+ model.add(Dense(128, activation="relu"))
129
+ model.add(Dense(2, activation="softmax"))
130
+ model.compile(
131
+ loss="sparse_categorical_crossentropy",
132
+ optimizer=Adam(learning_rate=0.000035),
133
+ metrics=["sparse_categorical_accuracy"],
134
+ )
135
+ return model
136
+ ```
137
+ #### Fitting the model
138
+ ```
139
+ %%time
140
+ history = model.fit(
141
+ train_datagen,
142
+ steps_per_epoch = train_datagen.n//train_datagen.batch_size,
143
+ epochs = 10,
144
+ validation_data= val_datagen,
145
+ validation_steps= val_datagen.n//val_datagen.batch_size,
146
+ callbacks=[callback, reduceLR, checkpoint],
147
+ verbose = 1
148
+ )
149
+ ```
150
+ #### Preprocessing
151
+
152
+ ```
153
+ train_image_generator = ImageDataGenerator(
154
+ rotation_range= 0.5,
155
+ horizontal_flip=True,
156
+ vertical_flip=True,
157
+ zoom_range=0.5,
158
+ rescale= 1./255
159
+ )
160
+
161
+ train_datagen = train_image_generator.flow_from_directory(
162
+ train_dir,
163
+ target_size= (IMG_HEIGHT,IMG_WIDTH),
164
+ color_mode='rgb',
165
+ batch_size= batch_size,
166
+ class_mode= 'binary',
167
+ classes=['NORMAL','PNEUMONIA'],
168
+ shuffle= True,
169
+ seed= 42
170
+ )
171
+ ```
172
+ set the value `shuffle=False` for val_datagen and test_datagen and change the value of `train_dir` to `val_dir` and 'test_dir' respectively
173
+
174
+ #### Training Hyperparameters
175
+
176
+ - **Training regime:**
177
+ - Using keras callbacks to reduce the load on the gpu/cpu by checking the model growth and early stopping or reducing the learning rate accordingly.
178
+ - Saving the best accuracy as a checkpoint to resume the training from
179
+ ```
180
+ from keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
181
+
182
+ callback = EarlyStopping(
183
+ monitor="val_loss", patience=6, restore_best_weights=True, min_delta=0.03, verbose=2
184
+ )
185
+ reduceLR = ReduceLROnPlateau(
186
+ monitor="val_loss",
187
+ factor=0.01,
188
+ patience=2,
189
+ min_lr=0.000035,
190
+ min_delta=0.01,
191
+ verbose=2,
192
+ )
193
+ checkpoint = ModelCheckpoint(
194
+ filepath=f"../Checkpoints/{{val_sparse_categorical_accuracy:.2f}}",
195
+ save_weights_only=True,
196
+ monitor="val_sparse_categorical_accuracy",
197
+ mode="max",
198
+ save_best_only=True,
199
+ verbose=2,
200
+ initial_value_threshold= baseline
201
+ )
202
+ ```
203
+
204
+ #### Define Defaults
205
+
206
+ Batch_size = 32 *smaller batch size for weaker systems*
207
+ IMG_HEIGHTS = 224
208
+ IMG_WEIGHTS = 224
209
+ epochs = 10
210
+ train_dir = path/to/chest_xray/train
211
+ val_dir = path/to/chest_xray/val
212
+ test_dir = path/to/chest_xray/test
213
+ #### Metrics
214
+
215
+ Evaluation metrics used are recall and pricision
216
+
217
+ ### Results
218
+
219
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/652917fd8297110ffe4e04ba/cml6Bd82tv3Rpu0bxBwQq.png)
220
+
221
+ #### Summary
222
+
223
+ The model is capable of detecting pneumonia with an accuracy of 91%