rufimelo's picture
Update README.md
1dfa3a1
|
raw
history blame
4.11 kB
---
language:
- pt
thumbnail: "Portugues SBERT for the Legal Domain"
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
---
# rufimelo/Legal-SBERTimbau-large
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large.
It is adapted to the Portuguese legal domain.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-SBERTimbau-large')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-large')
model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-large}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results STS
| Model| Dataset | PearsonCorrelation |
| ---------------------------------------- | ---------- | ---------- |
| Legal-SBERTimbau-large| Assin | 0.766293861 |
| Legal-SBERTimbau-large| Assin2| 0.823565322 |
| ---------------------------------------- | ---------- |---------- |
| paraphrase-multilingual-mpnet-base-v2| Assin | 0.743740222 |
| paraphrase-multilingual-mpnet-base-v2| Assin2| 0.823565322 |
| paraphrase-multilingual-mpnet-base-v2| stsb_multi_mt pt| 0.83999 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin | 0.77641 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin2| 0.79831 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| stsb_multi_mt pt| 0.84575 |
## Training
Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large.
It was trained for Natural Language Inference (NLI). This was chosen due to the lack of Portuguese available data.
In addition to that, it was submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin) and [assin2](https://huggingface.co/datasets/assin2) datasets.
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->