|
--- |
|
library_name: peft |
|
license: llama3.2 |
|
base_model: meta-llama/Llama-3.2-1B |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: Llama-3.2-1B-binary-citation-classifier |
|
results: [] |
|
--- |
|
|
|
# Llama-3.2-1B-binary-citation-classifier |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on a dataset of scientific abstracts and citation counts. |
|
Its aim is to predict, based on an article abstract, if an article will be cited within five years or not. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5450 |
|
- Accuracy: 0.746 |
|
- F1: 0.7460 |
|
- Precision: 0.7460 |
|
- Recall: 0.746 |
|
|
|
## Model description |
|
|
|
Llama-3.2-1B architecture, modified with a rank 8 LORA adapter. |
|
|
|
## Intended uses & limitations |
|
|
|
Intended use is binary classification. The training set consists of PubMed indexed neuroscience-related articles exclusively. |
|
|
|
## Training and evaluation data |
|
|
|
[Training and evalutation data](https://huggingface.co/datasets/rudyvdbrink/CitationDatabase) |
|
|
|
## Training procedure |
|
|
|
Pre-training following Meta's procedures. |
|
LORA fine tuning with PEFT on 16k abstracts (8k cited, 8k uncited) |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.6249 | 1.0 | 500 | 0.5853 | 0.716 | 0.7160 | 0.7161 | 0.716 | |
|
| 0.5585 | 2.0 | 1000 | 0.5523 | 0.748 | 0.7478 | 0.7487 | 0.748 | |
|
| 0.6066 | 3.0 | 1500 | 0.5303 | 0.7535 | 0.7535 | 0.7535 | 0.7535 | |
|
| 0.5447 | 4.0 | 2000 | 0.5202 | 0.761 | 0.7609 | 0.7615 | 0.761 | |
|
| 0.4709 | 5.0 | 2500 | 0.5168 | 0.7645 | 0.7645 | 0.7645 | 0.7645 | |
|
| 0.5002 | 6.0 | 3000 | 0.5137 | 0.7695 | 0.7695 | 0.7696 | 0.7695 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.2 |
|
- Transformers 4.52.4 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.2 |