File size: 2,530 Bytes
3553205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3056a
 
 
3553205
 
3d3056a
1da5bb6
 
 
 
 
3d3056a
 
 
3553205
3d3056a
 
 
3553205
3d3056a
 
 
3553205
3d3056a
 
 
3553205
 
 
3d3056a
 
 
 
 
 
 
 
 
 
 
1da5bb6
3d3056a
 
 
 
 
 
1da5bb6
 
 
 
 
 
3d3056a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Llama-3.2-1B-binary-citation-classifier
  results: []
---

# Llama-3.2-1B-binary-citation-classifier

This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on a dataset of scientific abstracts and citation counts. 
Its aim is to predict, based on an article abstract, if an article will be cited within five years or not.
It achieves the following results on the evaluation set:
- Loss: 0.5450
- Accuracy: 0.746
- F1: 0.7460
- Precision: 0.7460
- Recall: 0.746

## Model description

Llama-3.2-1B architecture, modified with a rank 8 LORA adapter.

## Intended uses & limitations

Intended use is binary classification. The training set consists of PubMed indexed neuroscience-related articles exclusively. 

## Training and evaluation data

[Training and evalutation data](https://huggingface.co/datasets/rudyvdbrink/CitationDatabase)

## Training procedure

Pre-training following Meta's procedures. 
LORA fine tuning with PEFT on 16k abstracts (8k cited, 8k uncited)

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6249        | 1.0   | 500  | 0.5853          | 0.716    | 0.7160 | 0.7161    | 0.716  |
| 0.5585        | 2.0   | 1000 | 0.5523          | 0.748    | 0.7478 | 0.7487    | 0.748  |
| 0.6066        | 3.0   | 1500 | 0.5303          | 0.7535   | 0.7535 | 0.7535    | 0.7535 |
| 0.5447        | 4.0   | 2000 | 0.5202          | 0.761    | 0.7609 | 0.7615    | 0.761  |
| 0.4709        | 5.0   | 2500 | 0.5168          | 0.7645   | 0.7645 | 0.7645    | 0.7645 |
| 0.5002        | 6.0   | 3000 | 0.5137          | 0.7695   | 0.7695 | 0.7696    | 0.7695 |


### Framework versions

- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2