File size: 2,013 Bytes
16c6c7a 3bf36e3 16c6c7a b7de5d9 16c6c7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
inference: false
language: pt
datasets:
- assin2
---
# BERTimbau base for Semantic Textual Similarity
This is the [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) model finetuned for
Semantic Textual Similarity with the [ASSIN 2](https://huggingface.co/datasets/assin2) dataset.
This model is suitable for Portuguese.
- Git Repo: [Evaluation of Portuguese Language Models](https://github.com/ruanchaves/eplm).
- Demo: [Portuguese Semantic Similarity](https://ruanchaves-portuguese-semantic-similarity.hf.space)
## Full regression example
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import numpy as np
import torch
model_name = "ruanchaves/bert-base-portuguese-cased-assin2-similarity"
s1 = "A gente faz o aporte financeiro, é como se a empresa fosse parceira do Monte Cristo."
s2 = "Fernando Moraes afirma que não tem vínculo com o Monte Cristo além da parceira."
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt")
with torch.no_grad():
output = model(**model_input)
score = output[0][0].detach().numpy().item()
print(f"Similarity Score: {np.round(float(score), 4)}")
```
## Citation
Our research is ongoing, and we are currently working on describing our experiments in a paper, which will be published soon.
In the meanwhile, if you would like to cite our work or models before the publication of the paper, please cite our [GitHub repository](https://github.com/ruanchaves/eplm):
```
@software{Chaves_Rodrigues_eplm_2023,
author = {Chaves Rodrigues, Ruan and Tanti, Marc and Agerri, Rodrigo},
doi = {10.5281/zenodo.7781848},
month = {3},
title = {{Evaluation of Portuguese Language Models}},
url = {https://github.com/ruanchaves/eplm},
version = {1.0.0},
year = {2023}
}
``` |