ryan_model3272024 / README.md
rshrott's picture
🍻 cheers
2a7c83b verified
|
raw
history blame
2.68 kB
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
model-index:
- name: ryan_model3272024
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ryan_model3272024
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2552
- Na Accuracy: 0.95
- Ordinal Accuracy: 0.6267
- Ordinal Mae: 1.1586
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Na Accuracy | Ordinal Accuracy | Ordinal Mae |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:----------------:|:-----------:|
| 0.3853 | 0.32 | 100 | 0.3272 | 0.924 | 0.52 | 1.2106 |
| 0.3396 | 0.64 | 200 | 0.2741 | 0.94 | 0.5644 | 1.1640 |
| 0.2075 | 0.96 | 300 | 0.2772 | 0.946 | 0.5933 | 1.1942 |
| 0.196 | 1.28 | 400 | 0.2738 | 0.95 | 0.6133 | 1.1984 |
| 0.2228 | 1.6 | 500 | 0.2685 | 0.956 | 0.62 | 1.1989 |
| 0.1816 | 1.92 | 600 | 0.2552 | 0.95 | 0.6267 | 1.1586 |
| 0.0682 | 2.24 | 700 | 0.2721 | 0.952 | 0.6578 | 1.1558 |
| 0.0795 | 2.56 | 800 | 0.2754 | 0.948 | 0.6333 | 1.1599 |
| 0.1367 | 2.88 | 900 | 0.2953 | 0.946 | 0.64 | 1.1667 |
| 0.0387 | 3.19 | 1000 | 0.2923 | 0.944 | 0.6378 | 1.2025 |
| 0.0293 | 3.51 | 1100 | 0.2885 | 0.948 | 0.6644 | 1.1666 |
| 0.0286 | 3.83 | 1200 | 0.2868 | 0.95 | 0.6711 | 1.1626 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2