File size: 4,186 Bytes
124d3a0 b65848c 124d3a0 b65848c 124d3a0 b65848c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
license: other
tags:
- mergekit
- merge
base_model:
- Qwen/Qwen2.5-3B
- Qwen/Qwen2.5-3B-Instruct
- arcee-ai/raspberry-3B
license_name: qwen-research
license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE
model-index:
- name: Rombos-LLM-V2.5.1-Qwen-3b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 25.95
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 14.88
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.31
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.24
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.82
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 19.1
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b
name: Open LLM Leaderboard
---
# Rombos-LLM-V2.5.1-Qwen-3b
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/pNDtgE5FDkxxvbG4qiZ1A.jpeg)
A little experiment I threw together to take a really high quality LLM I found (arcee-ai/raspberry-3B) and merge it using the last step of my Continuous Finetuning method outlines in the paper linked bellow.
https://docs.google.com/document/d/1OjbjU5AOz4Ftn9xHQrX3oFQGhQ6RDUuXQipnQ9gn6tU/edit?usp=sharing
Mergekit.yaml file is as follows:
```yaml
models:
- model: Qwen2.5-3B-Instruct
parameters:
weight: 1
density: 1
- model: raspberry-3B
parameters:
weight: 1
density: 1
merge_method: ties
base_model: Qwen2.5-3B
parameters:
weight: 1
density: 1
normalize: true
int8_mask: true
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__Rombos-LLM-V2.5.1-Qwen-3b)
| Metric |Value|
|-------------------|----:|
|Avg. |13.22|
|IFEval (0-Shot) |25.95|
|BBH (3-Shot) |14.88|
|MATH Lvl 5 (4-Shot)| 8.31|
|GPQA (0-shot) | 3.24|
|MuSR (0-shot) | 7.82|
|MMLU-PRO (5-shot) |19.10|
|