File size: 2,257 Bytes
f2ed383
 
 
0a31060
 
5f76b6d
 
f2ed383
 
 
 
 
 
 
b407a10
 
 
 
 
 
 
 
 
 
 
 
 
1bfe3ab
b407a10
 
1bfe3ab
b407a10
 
1bfe3ab
b407a10
 
1bfe3ab
f2ed383
 
 
 
 
 
 
5f76b6d
f2ed383
b407a10
1bfe3ab
 
 
 
f2ed383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b407a10
2c4c435
f2ed383
 
 
 
 
 
 
 
1dc3dc9
 
1bfe3ab
 
 
f2ed383
 
 
 
 
 
 
0a31060
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- id_nergrit_corpus
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-ner-silvanus
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: id_nergrit_corpus
      type: id_nergrit_corpus
      config: ner
      split: validation
      args: ner
    metrics:
    - name: Precision
      type: precision
      value: 0.910221531286436
    - name: Recall
      type: recall
      value: 0.9256916996047431
    - name: F1
      type: f1
      value: 0.9178914364099547
    - name: Accuracy
      type: accuracy
      value: 0.98449068822571
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-ner-silvanus

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the id_nergrit_corpus dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0635
- Precision: 0.9102
- Recall: 0.9257
- F1: 0.9179
- Accuracy: 0.9845

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.167         | 1.0   | 827  | 0.0505          | 0.9025    | 0.9257 | 0.9140 | 0.9849   |
| 0.0465        | 2.0   | 1654 | 0.0545          | 0.9012    | 0.9300 | 0.9154 | 0.9837   |
| 0.0321        | 3.0   | 2481 | 0.0635          | 0.9102    | 0.9257 | 0.9179 | 0.9845   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1