File size: 2,059 Bytes
be87f83
 
 
 
96b45f7
be87f83
 
 
 
 
96b45f7
 
 
 
 
 
 
 
 
 
 
 
be87f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b45f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: indolem/indobertweet-base-uncased
tags:
- monolingual
metrics:
- accuracy
model-index:
- name: indobertweet-base-uncased-fire-classification-silvanus
  results: []
widget:
- text: >-
    Kebakaran hutan dan lahan terus terjadi dan semakin meluas di Kota
    Palangkaraya, Kalimantan Tengah (Kalteng) pada hari Rabu, 15 Nopember 2023
    20.00 WIB. Bahkan kobaran api mulai membakar pondok warga dan mendekati
    permukiman. BZK #RCTINews #SeputariNews #News #Karhutla #KebakaranHutan
    #HutanKalimantan #SILVANUS_Italian_Pilot_Testing
  example_title: Indonesia
datasets:
- rollerhafeezh-amikom/fire-classification
language:
- id
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indobertweet-base-uncased-fire-classification-silvanus

This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1071
- Accuracy: 0.9767

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 49   | 0.2508          | 0.8372   |
| No log        | 2.0   | 98   | 0.1133          | 0.9535   |
| No log        | 3.0   | 147  | 0.1071          | 0.9767   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1