File size: 3,165 Bytes
f4f91fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c430e
f4f91fa
 
07c430e
f4f91fa
 
 
 
 
 
 
 
 
07c430e
 
 
f4f91fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c430e
 
f4f91fa
 
 
07c430e
f4f91fa
 
 
07c430e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4f91fa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- quora
metrics:
- accuracy
- f1
model-index:
- name: all-MiniLM-L6-v2-quora
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: quora
      type: quora
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8150291876916989
    - name: F1
      type: f1
      value: 0.794526570313788
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# all-MiniLM-L6-v2-quora

This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the quora dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0865
- Accuracy: 0.8150
- F1: 0.7945

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
| 0.087         | 1.0   | 11371  | 0.0829          | 0.4143   | 0.5535 |
| 0.0794        | 2.0   | 22742  | 0.0783          | 0.6017   | 0.6458 |
| 0.0606        | 3.0   | 34113  | 0.0756          | 0.3631   | 0.5327 |
| 0.05          | 4.0   | 45484  | 0.0781          | 0.4475   | 0.5679 |
| 0.0448        | 5.0   | 56855  | 0.0789          | 0.6856   | 0.6975 |
| 0.0372        | 6.0   | 68226  | 0.0761          | 0.3922   | 0.5443 |
| 0.033         | 7.0   | 79597  | 0.0786          | 0.7586   | 0.7494 |
| 0.032         | 8.0   | 90968  | 0.0780          | 0.5011   | 0.5927 |
| 0.0229        | 9.0   | 102339 | 0.0819          | 0.7513   | 0.7439 |
| 0.0198        | 10.0  | 113710 | 0.0840          | 0.5522   | 0.6185 |
| 0.0169        | 11.0  | 125081 | 0.0821          | 0.7959   | 0.7785 |
| 0.0199        | 12.0  | 136452 | 0.0807          | 0.8353   | 0.8118 |
| 0.0118        | 13.0  | 147823 | 0.0819          | 0.8418   | 0.8176 |
| 0.0123        | 14.0  | 159194 | 0.0816          | 0.7577   | 0.7487 |
| 0.0093        | 15.0  | 170565 | 0.0856          | 0.7934   | 0.7765 |
| 0.0124        | 16.0  | 181936 | 0.0843          | 0.8484   | 0.8241 |
| 0.008         | 17.0  | 193307 | 0.0838          | 0.7998   | 0.7818 |
| 0.0106        | 18.0  | 204678 | 0.0872          | 0.8245   | 0.8027 |
| 0.0066        | 19.0  | 216049 | 0.0857          | 0.8122   | 0.7922 |
| 0.0059        | 20.0  | 227420 | 0.0865          | 0.8150   | 0.7945 |


### Framework versions

- Transformers 4.21.3
- Pytorch 1.12.1+cu116
- Datasets 2.5.1
- Tokenizers 0.12.1