File size: 14,588 Bytes
08945ad d0948e7 08945ad d0948e7 08945ad d0948e7 08945ad d0948e7 08945ad d0948e7 08945ad d0948e7 08945ad d0948e7 08945ad d0948e7 08945ad d0948e7 08945ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8db0f85f0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8db0f8680>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8db0f8710>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8db0f87a0>",
"_build": "<function ActorCriticPolicy._build at 0x7ff8db0f8830>",
"forward": "<function ActorCriticPolicy.forward at 0x7ff8db0f88c0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8db0f8950>",
"_predict": "<function ActorCriticPolicy._predict at 0x7ff8db0f89e0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8db0f8a70>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8db0f8b00>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8db0f8b90>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7ff8db0c0900>"
},
"verbose": 3,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 524288,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651683474.96104,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPLpjwM6Jk/0YPBPQKzN7/zJVU9U7GQPQAAAAAAAAAAALZEPK45rbq6r883GnDJMtfPkTr7HO62AACAPwAAgD/gN0S+qqKDPtkSAz+COLy+ENYqPhgKCD4AAAAAAAAAALNqL71SKry7lkM7PuUYl747sWA92rUtvwAAAAAAAIA/M8jJvB9Hv7tiHSg+GdC9OfQiLr1bZXM7AACAPwAAgD+NMii+g5YhP83jgj32PgS/GzVavmIOUz4AAAAAAAAAADNnebz4Hbo/wkJhvnmNRj6+xo08p7pJPQAAAAAAAAAAMzPtOa+pdT/PxhE8zHU1v1jnOT3aUJM9AAAAAAAAAADjDbQ+alMpP76KoL6xgyi/WTSOPtgskL4AAAAAAAAAAJoiDz2nsEg+YId0vu2ht76ZdOa9CaNMvQAAAAAAAAAAzXBTvUifqLo4zCKzLp36sK47iLhwFcMzAACAPwAAgD9A9NQ9z2AUPT0qMb5CkaO+oYgevYS9ubwAAAAAAAAAAJqijzxI46a6pXp0ueIoX7QjKJe6jnWMOAAAgD8AAIA/S3yLvh1cPj+66nG9B2stv1B7Dr/GR2U9AAAAAAAAAACaMOY8XGFIPi5HA73KocS+eMsaPENbl7wAAAAAAAAAAI0R871IEcS6knIgu00NFrj0Pg47hiREOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.04857599999999995,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2UElrmNdckCUhpRSlIwBbJRL04wBdJRHQKULzXEIgNh1fZQoaAZoCWgPQwgT1VsDm31yQJSGlFKUaBVLsWgWR0ClC9xPwd8zdX2UKGgGaAloD0MI/Io1XCSOckCUhpRSlGgVS9JoFkdApQxkNYr8SHV9lChoBmgJaA9DCGr5gav893NAlIaUUpRoFUu/aBZHQKUMboZhrnF1fZQoaAZoCWgPQwhaZDvfT4xxQJSGlFKUaBVL12gWR0ClDHmFBY3edX2UKGgGaAloD0MIUz9vKhIrckCUhpRSlGgVS6ZoFkdApQyAxagVXXV9lChoBmgJaA9DCFTHKqVnQ3FAlIaUUpRoFUvDaBZHQKUMj3EAHVx1fZQoaAZoCWgPQwgUJoxmJQFzQJSGlFKUaBVLyWgWR0ClDKsA3kxRdX2UKGgGaAloD0MIDhMNUnA0ckCUhpRSlGgVS9BoFkdApQy+vUz9CXV9lChoBmgJaA9DCC6rsBmgM3BAlIaUUpRoFUu+aBZHQKUM6gfU4Jh1fZQoaAZoCWgPQwink2x1ubRyQJSGlFKUaBVLyGgWR0ClDPzI/7iydX2UKGgGaAloD0MIcy7FVeX8c0CUhpRSlGgVS99oFkdApQ1rhFVktnV9lChoBmgJaA9DCFiNJawNrG1AlIaUUpRoFUu5aBZHQKUNhn7Hhjx1fZQoaAZoCWgPQwjqswOuq/hzQJSGlFKUaBVL2WgWR0ClDfy5Zr57dX2UKGgGaAloD0MIy6Da4ET4cUCUhpRSlGgVS8BoFkdApQ46WmgrY3V9lChoBmgJaA9DCE6zQLuD+nBAlIaUUpRoFUvVaBZHQKUOOsKb8WN1fZQoaAZoCWgPQwihEWxcv05yQJSGlFKUaBVLyGgWR0ClDkbJwKjSdX2UKGgGaAloD0MI4UIewU1RckCUhpRSlGgVS6poFkdApQ52PxQSBnV9lChoBmgJaA9DCCJvufrxNXBAlIaUUpRoFUu+aBZHQKUOwUM5OrR1fZQoaAZoCWgPQwgz/n3GBchuQJSGlFKUaBVLyGgWR0ClDvYIBzV+dX2UKGgGaAloD0MIINJvX4eeb0CUhpRSlGgVS8ZoFkdApQ7/BguyvHV9lChoBmgJaA9DCEypS8ZxxHBAlIaUUpRoFUvBaBZHQKUPDIS13MZ1fZQoaAZoCWgPQwgHsp5aff1zQJSGlFKUaBVL3GgWR0ClDy0q6OHWdX2UKGgGaAloD0MIrHR3nc2bckCUhpRSlGgVS9toFkdApQ9v2ugYg3V9lChoBmgJaA9DCBfTTPd6HXFAlIaUUpRoFUuqaBZHQKUPrGPxQSB1fZQoaAZoCWgPQwi9qUiF8W9wQJSGlFKUaBVL5GgWR0ClD9PLHMlkdX2UKGgGaAloD0MICTiEKjW4c0CUhpRSlGgVS+xoFkdApQ/bAk9lmXV9lChoBmgJaA9DCP4KmSvDaXFAlIaUUpRoFUvQaBZHQKUQEwdsBQx1fZQoaAZoCWgPQwh4nKIj+WtwQJSGlFKUaBVLrWgWR0ClEDEEC/47dX2UKGgGaAloD0MIVcA9z58Cc0CUhpRSlGgVS79oFkdApRClOVPepHV9lChoBmgJaA9DCIielElNvHJAlIaUUpRoFUvFaBZHQKUQuRDkU9J1fZQoaAZoCWgPQwjd0mpInOZyQJSGlFKUaBVLuWgWR0ClENAHVwxWdX2UKGgGaAloD0MIwXKEDOSfcUCUhpRSlGgVS7VoFkdApRFO5+Ytx3V9lChoBmgJaA9DCB13SgfrOHNAlIaUUpRoFUvSaBZHQKURdid8Rcx1fZQoaAZoCWgPQwh0RL5LKR9zQJSGlFKUaBVL0GgWR0ClEb+Pq9oOdX2UKGgGaAloD0MIjnbc8DuNcUCUhpRSlGgVS8loFkdApRHNUGVzIXV9lChoBmgJaA9DCJbnwd0ZpXFAlIaUUpRoFUveaBZHQKUR2x59mYl1fZQoaAZoCWgPQwjQ8jy4O7hxQJSGlFKUaBVLvGgWR0ClEe22gFotdX2UKGgGaAloD0MICcTr+kUxcUCUhpRSlGgVS8VoFkdApRJI+nqFAXV9lChoBmgJaA9DCFMEOL2LrGZAlIaUUpRoFU3oA2gWR0ClEleirT6SdX2UKGgGaAloD0MIK98zEuEZdECUhpRSlGgVS8BoFkdApRJdY4hllXV9lChoBmgJaA9DCNGVCFT/cnJAlIaUUpRoFUvDaBZHQKUSbKODJ2d1fZQoaAZoCWgPQwjElh5NdaZxQJSGlFKUaBVL3GgWR0ClEwr8JlasdX2UKGgGaAloD0MIY3rCEg+Cc0CUhpRSlGgVS+poFkdApRMaXMQmNXV9lChoBmgJaA9DCOIgIcpXbXNAlIaUUpRoFUu5aBZHQKUTIidJ8OV1fZQoaAZoCWgPQwiA9E2axqVxQJSGlFKUaBVLzGgWR0ClE0t6w+t9dX2UKGgGaAloD0MIVAJiEq6kcUCUhpRSlGgVS8FoFkdApRNRAWzninV9lChoBmgJaA9DCD1+b9Nfp3FAlIaUUpRoFUuqaBZHQKUTefra/RF1fZQoaAZoCWgPQwiOzCN/MPlzQJSGlFKUaBVLvmgWR0ClE9hddE9ddX2UKGgGaAloD0MIiJ//HnxtcUCUhpRSlGgVS6xoFkdApRPiuIRAbHV9lChoBmgJaA9DCNKKbyi8qHFAlIaUUpRoFUuxaBZHQKUT/oAXEZR1fZQoaAZoCWgPQwjl02Nbxg5yQJSGlFKUaBVLsWgWR0ClFIFrl/6PdX2UKGgGaAloD0MIZi0FpP2Pc0CUhpRSlGgVS95oFkdApRSa5NGmUHV9lChoBmgJaA9DCKDFUiTfY3NAlIaUUpRoFUu3aBZHQKUUnSpBHCp1fZQoaAZoCWgPQwh0X85s18dxQJSGlFKUaBVLt2gWR0ClFK0ZeiSJdX2UKGgGaAloD0MI2sU0031AckCUhpRSlGgVS99oFkdApRSv4VRDTnV9lChoBmgJaA9DCM1c4PJY3HFAlIaUUpRoFUvUaBZHQKUU42Yv38J1fZQoaAZoCWgPQwi5jnHFxR1CQJSGlFKUaBVLaGgWR0ClFSqyWzF/dX2UKGgGaAloD0MIw/UoXI9Lb0CUhpRSlGgVS7NoFkdApRVK6J66a3V9lChoBmgJaA9DCFK2SNqNXHNAlIaUUpRoFUvPaBZHQKUVsIgNgBt1fZQoaAZoCWgPQwhnutdJvXRyQJSGlFKUaBVL2WgWR0ClFbsHjZL7dX2UKGgGaAloD0MI1lOrr26WcECUhpRSlGgVS89oFkdApRXZ5s0pE3V9lChoBmgJaA9DCAHbwYj9dXFAlIaUUpRoFUuvaBZHQKUWCjqOcUd1fZQoaAZoCWgPQwg6IAn79vtyQJSGlFKUaBVL4mgWR0ClFh2FN+LFdX2UKGgGaAloD0MIqDej5mtucECUhpRSlGgVS8RoFkdApRZvKQq7RXV9lChoBmgJaA9DCJJB7iIMtHNAlIaUUpRoFUvuaBZHQKUWbwe/5+J1fZQoaAZoCWgPQwhZp8r3TCVzQJSGlFKUaBVLtWgWR0ClFr/kWAPNdX2UKGgGaAloD0MIV+pZEEoLcECUhpRSlGgVS7JoFkdApRbjHfdhzHV9lChoBmgJaA9DCPSj4ZS5m3JAlIaUUpRoFUu/aBZHQKUXC2lVLjB1fZQoaAZoCWgPQwgktVAyudRuQJSGlFKUaBVLxmgWR0ClFxLYGt6pdX2UKGgGaAloD0MIUWuadxyZcUCUhpRSlGgVS9JoFkdApRc0v0yxiXV9lChoBmgJaA9DCHY3T3UILnNAlIaUUpRoFUvOaBZHQKUXboVVPvd1fZQoaAZoCWgPQwh0YDlCRlFxQJSGlFKUaBVLv2gWR0ClF4i8vmHQdX2UKGgGaAloD0MI7URJSKQccUCUhpRSlGgVS8doFkdApRgggPmPo3V9lChoBmgJaA9DCM7/q46c729AlIaUUpRoFUu8aBZHQKUYJ1oQFs51fZQoaAZoCWgPQwiu2cpLfg1xQJSGlFKUaBVLr2gWR0ClGD9Sde6adX2UKGgGaAloD0MI74/3qhX0b0CUhpRSlGgVS7ZoFkdApRhCbjLjgnV9lChoBmgJaA9DCCxEh8BR63NAlIaUUpRoFUvwaBZHQKUYQs5n14B1fZQoaAZoCWgPQwgAxciSuRFyQJSGlFKUaBVL2GgWR0ClGF8qe9SNdX2UKGgGaAloD0MIIuLmVHI5cUCUhpRSlGgVS7doFkdApRilA9mpVHV9lChoBmgJaA9DCEGd8ujGNXRAlIaUUpRoFUu9aBZHQKUYuEmICU51fZQoaAZoCWgPQwie6/twUJhwQJSGlFKUaBVLrmgWR0ClGPuBlMAWdX2UKGgGaAloD0MIwJMWLuurcECUhpRSlGgVS7VoFkdApRk8UZeiSXV9lChoBmgJaA9DCKgck8W9yHFAlIaUUpRoFUuwaBZHQKUZV0OmR/51fZQoaAZoCWgPQwiqukc2V6VyQJSGlFKUaBVL4GgWR0ClGXr0jC53dX2UKGgGaAloD0MIlbpkHKOacECUhpRSlGgVS7NoFkdApRm31DjR2XV9lChoBmgJaA9DCMrErYIYmnNAlIaUUpRoFUvraBZHQKUZ6snRb8p1fZQoaAZoCWgPQwjQudv10lZxQJSGlFKUaBVL2GgWR0ClGhLOZ9eAdX2UKGgGaAloD0MI7bsi+F9HckCUhpRSlGgVS7doFkdApRpfcN6PbXV9lChoBmgJaA9DCOZAD7XtQnJAlIaUUpRoFUuzaBZHQKUadMMZxaR1fZQoaAZoCWgPQwg1t0JYjelwQJSGlFKUaBVLw2gWR0ClGo2Kl54XdX2UKGgGaAloD0MIJlex+M0oc0CUhpRSlGgVS7JoFkdApRqRmqYJFHV9lChoBmgJaA9DCAn+t5KdVmBAlIaUUpRoFU3oA2gWR0ClGskn1FpgdX2UKGgGaAloD0MImrSpuocOckCUhpRSlGgVS9ZoFkdApRrj5uZTh3V9lChoBmgJaA9DCNo8DoN5t3FAlIaUUpRoFUu9aBZHQKUa/W4mTkh1fZQoaAZoCWgPQwgUXRd+8O9xQJSGlFKUaBVL0WgWR0ClG0aYVqN7dX2UKGgGaAloD0MIz/boDbfLcUCUhpRSlGgVS8doFkdApRtngxagVXV9lChoBmgJaA9DCAcI5ugxFnJAlIaUUpRoFUvKaBZHQKUbp336AOJ1fZQoaAZoCWgPQwhegehJGfZxQJSGlFKUaBVLzWgWR0ClG8e6Zpi7dX2UKGgGaAloD0MId5/jowVEc0CUhpRSlGgVS85oFkdApRvs3IdU83VlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 468,
"n_steps": 2048,
"gamma": 0.995,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 6,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |