File size: 13,702 Bytes
2629dd8
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bad92dfbc70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bad92dfbd00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bad92dfbd90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bad92dfbe20>", "_build": "<function ActorCriticPolicy._build at 0x7bad92dfbeb0>", "forward": "<function ActorCriticPolicy.forward at 0x7bad92dfbf40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bad92e04040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bad92e040d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bad92e04160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bad92e041f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bad92e04280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bad92e04310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bad93e3d2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692981945912368001, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3d2j12gKI/Pet3Pv35275LJ00+HQprPAAAAAAAAAAAswUwvXgIhD4jNwg+JaGgvpLPXj2aYok9AAAAAAAAAACgK30+h8sIP/3cvL7mTJm+gEmrPa0gZ74AAAAAAAAAAM3E1LyBGKY/whdGvpLS+77QFfy8A87cvQAAAAAAAAAAZjSXvC9hJj9GwpI9GYW4vtqnD7yNW+08AAAAAAAAAAAzSxu7FHiDuoqEHzpeKze2lbJJutBrObkAAIA/AACAP1oDpT3PxTS898EBvfdAIj2J96g9quQBvgAAgD8AAAAADcIRPp39Qz4Yx3e+idBuvlRCAT3z3Za8AAAAAAAAAAAAur48l6NBPqqRR74jFYa+gSQBvs0D5DwAAAAAAAAAAM3F/rypbVU/0HFZvaxOwL5ApDC9WxWPvQAAAAAAAAAAc+q1PXv8grpmhWe7mSkbOGbEELvJGwg6AAAAAAAAgD8zpBw+dBG/Pt7aCr7k/4++3MHBPEpqdbwAAAAAAAAAAI0Ohb6nczE/G547va6J9r6ZLIq+ihzrPQAAAAAAAAAAM0mrPD70tj/OKag+W7KPPbTlBzvUULA9AAAAAAAAAABm4qS80bq5P21Ogr74nQQ+VFi7PAtYaT0AAAAAAAAAAIY/WD49oT8/+r+ivfpTq75NS2Q+ApkpvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHD+j+FUQ06MAWyUTT4BjAF0lEdAkaf9nXd0rHV9lChoBkdAbpvgQ6IWQGgHTQkBaAhHQJGptgc94eN1fZQoaAZHQG3m4xDb8FZoB00UAWgIR0CRqlUcn3L3dX2UKGgGR0BwP8FC9h7WaAdNHgFoCEdAkashzRx95XV9lChoBkdAc0sLl3hXKmgHTWMBaAhHQJGrRdu5z5p1fZQoaAZHQHHTGiQDFIdoB00wAWgIR0CRq4mKIi1RdX2UKGgGR0BxZBiI+GGmaAdNEAFoCEdAkauKKtPpIXV9lChoBkdAcd0TY/Vy3mgHS+toCEdAkavo8QqZt3V9lChoBkdAb1Qd+5OJtWgHS/VoCEdAka2gxvegtnV9lChoBkdAbj/ugHu7YmgHTQEBaAhHQJGtr6O5rgx1fZQoaAZHQGzLLoGIKtxoB0vraAhHQJGunA+IM0B1fZQoaAZHQHD+nuRcNYtoB0vgaAhHQJGums5n14B1fZQoaAZHQHD0unuRcNZoB00MAWgIR0CRr2P2f02+dX2UKGgGR0Bw3oPH1e0HaAdNIgFoCEdAka+2ZE2HcnV9lChoBkdAcj4FwkxASmgHS/RoCEdAka/MvqTr3XV9lChoBkdAcoIFfAsTWWgHTUABaAhHQJGwB3zMA3l1fZQoaAZHQHFurOiWVu9oB0v2aAhHQJGxdzmwJPZ1fZQoaAZHQHDuHH/95yFoB006AWgIR0CRsYM/QjUvdX2UKGgGR0BSNaCpWFN+aAdLxmgIR0CRsZ+VC5VfdX2UKGgGR0BN6CrDIikgaAdL3mgIR0CRsfcAzYVZdX2UKGgGR0ByV1mI0qH5aAdL62gIR0CRsxcfeUILdX2UKGgGR0BxxerNnoPkaAdNLAFoCEdAkbOtQTEiuHV9lChoBkdAb0MK3NLUTmgHTRIBaAhHQJGz+VY6nzh1fZQoaAZHQHBlajN6gNBoB0v5aAhHQJG1ZyksSTR1fZQoaAZHQHLOUlVtGd9oB0vjaAhHQJG1qvmozep1fZQoaAZHQHHxlNtZV4poB01QAWgIR0CRtcF1SwW4dX2UKGgGR0Bw3oRSP2f1aAdNEAFoCEdAkbYgKjSG8HV9lChoBkdAcYcEovzvqmgHTQwBaAhHQJG27yMDOkd1fZQoaAZHQHOBunAIpphoB00IAWgIR0CRt+IOH310dX2UKGgGR0Bu5x7mdRR/aAdNDQFoCEdAkbgqOcUdrHV9lChoBkdAcHi71qWTo2gHTRwBaAhHQJG4zBfrrxB1fZQoaAZHQG3RwSamXPZoB002AWgIR0CRuPuMuOCHdX2UKGgGR0Bzid+8XenAaAdNEAFoCEdAkbnmSdOIqXV9lChoBkdAcQt1aGHpKWgHTQEBaAhHQJG5+IgvDgt1fZQoaAZHQHKWCJCSidtoB00PAWgIR0CRugO6unuRdX2UKGgGR0BxFEt6HCXQaAdNNQFoCEdAkc5zjm0VrXV9lChoBkdAcoM/IsAeaWgHS+xoCEdAkc63kkrwv3V9lChoBkdATsTGcWj46GgHS8poCEdAkc8cQ7LdN3V9lChoBkdAcOGkc0cfeWgHTQsBaAhHQJHPksDnvDx1fZQoaAZHQG2jV4X40uVoB01NAWgIR0CR0Yg1m8NAdX2UKGgGR0Buf4MjNY8uaAdL92gIR0CR0dMxXXAedX2UKGgGR0BuSBr30wrUaAdNCAFoCEdAkdIHyEtdzHV9lChoBkdAc9RIJJGvwGgHTToBaAhHQJHT/c8DB/J1fZQoaAZHQHDr30PH1e1oB0v6aAhHQJHUWVZ9uxd1fZQoaAZHQHDxx8x9G7VoB0vyaAhHQJHVn5dnkDJ1fZQoaAZHQHFky3gDRtxoB00/AWgIR0CR1gw++ueSdX2UKGgGR0BwggVxjriVaAdL5GgIR0CR1nhje9BbdX2UKGgGR0ByQbZ+QU5/aAdNIgFoCEdAkdaByjpLVXV9lChoBkdAcQYkdV/+bWgHTQ4BaAhHQJHWmhufmLd1fZQoaAZHQHASG/etSydoB0vlaAhHQJHX4cHWz4V1fZQoaAZHQG1qlr2xptdoB00LAWgIR0CR1+E/SpirdX2UKGgGR0Bw0hYr8R+SaAdNDAFoCEdAkdgN2HLzPXV9lChoBkdAcRW38n/kvWgHS/RoCEdAkdifpY9xInV9lChoBkdAcYTRO1v2oWgHS+5oCEdAkdkZ9d/rjnV9lChoBkdAUDEdU83dbmgHS7VoCEdAkdkwuh9LH3V9lChoBkdAcgH6sySFG2gHTSIBaAhHQJHaDsOXmeV1fZQoaAZHQG3jkKmbb11oB00EAWgIR0CR2vaMrEtNdX2UKGgGR0BwXuSLZSNwaAdNKAFoCEdAkdvHY6GQCHV9lChoBkdAcShkwevIO2gHS+9oCEdAkdvYKx9oe3V9lChoBkdAciFvkzXSSmgHTQEBaAhHQJHcg+lj3Eh1fZQoaAZHQHOEXXVbzK9oB0v4aAhHQJHdBKujh1l1fZQoaAZHQHJkdz0Yj0NoB0v2aAhHQJHdOfOD8Lt1fZQoaAZHQHBpzefqX4VoB0vyaAhHQJHddQgs9Sx1fZQoaAZHQHAa8P8Q7LdoB00BAWgIR0CR3cjB2wFDdX2UKGgGR0BttHc1wYLtaAdL5GgIR0CR3fRqoIfKdX2UKGgGR0Bxu+kSElE7aAdNDgFoCEdAkd4Z/wy6+XV9lChoBkdAbr+EdvKlpGgHS+VoCEdAkd7hNyo4uXV9lChoBkdAcsB9ugpSaWgHTRcBaAhHQJHfUbKifxt1fZQoaAZHQHEtPMwDeTFoB00NAWgIR0CR34HUc4o7dX2UKGgGR0ByvZi/fwZwaAdNLAFoCEdAkd+9wm3OOnV9lChoBkdAbwzRaX8fm2gHTQkBaAhHQJHf4Svkill1fZQoaAZHQHCVstsenydoB0vlaAhHQJHhso+fRNR1fZQoaAZHQHEAv6GgzxhoB00sAWgIR0CR4d2lVLi/dX2UKGgGR0By9sSbpeNUaAdNEgFoCEdAkeIjZ+QU6HV9lChoBkdAcusIhhYvFmgHS/hoCEdAkeJIl+mWMXV9lChoBkdAcvzVsk6cRWgHS/9oCEdAkeOlL8Jla3V9lChoBkdAcXUqnFYMfGgHS/poCEdAkeO1anrIHXV9lChoBkdAcFQtWdVebGgHTQEBaAhHQJHkH2USqVB1fZQoaAZHQG/K51V5rxloB00oAWgIR0CR5DxZdOZcdX2UKGgGR0BR48/dIoVmaAdLwGgIR0CR5Gdhy8zzdX2UKGgGR0ButYQe3hGZaAdNFgFoCEdAkeT5F5OafHV9lChoBkdAcY3otcv/R2gHTRYBaAhHQJHlT0mMOwx1fZQoaAZHQHINoPCl7+loB00kAWgIR0CR5YoZQ53ldX2UKGgGR0Bueis8xKxtaAdL5WgIR0CR5cLX+VC5dX2UKGgGR0ByCXgm7aqTaAdNFgFoCEdAkeYfpt78enV9lChoBkdAcv1cvugHvGgHS/1oCEdAkeYZHI6sAHV9lChoBkdAcYcBqsU7CGgHTRgBaAhHQJHnBGlQ/HJ1fZQoaAZHQHDXkDp1RtRoB0vnaAhHQJHn+/TLGJh1fZQoaAZHQHGsvJvHcUNoB00DAWgIR0CR6CZOBUaRdX2UKGgGR0By06IEbHZLaAdL+2gIR0CR6FYZEUj+dX2UKGgGR0BwGOT/yXlbaAdNEAFoCEdAkeiXVf/m1nV9lChoBkdAceVYsd1dPmgHS/doCEdAkem7MPjGUHV9lChoBkdAVL7MEA5q/WgHS+NoCEdAkenJ9Vmz0HV9lChoBkdAbd/sZ5zHTGgHS/xoCEdAkenukYXO4XV9lChoBkdAckWPBBRht2gHS+5oCEdAkeo/GACnxnV9lChoBkdAcQK6ltTDO2gHS/xoCEdAkepTfFaStHV9lChoBkdAbaL37DVH4GgHS/xoCEdAkeshkZrHl3V9lChoBkdAcK9PS2H+ImgHS+ZoCEdAkevEH6dlNHV9lChoBkdAcOPsasIVumgHTQEBaAhHQJHrz+OwPiF1fZQoaAZHQG+zN1ZDArRoB0vraAhHQJHr3WBjFyd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}