File size: 2,045 Bytes
cb70733 3f73e1c cb70733 3f73e1c cb70733 3f73e1c cb70733 3f73e1c cb70733 3f73e1c cb70733 3f73e1c cb70733 3f73e1c cb70733 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: Mistral-7B-Instruct-v0.2-GPTQ_retrained_network_corpus
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-v0.2-GPTQ_retrained_network_corpus
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2183
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2041 | 1.0 | 28 | 2.2674 |
| 1.9644 | 2.0 | 56 | 2.2183 |
| 1.7637 | 3.0 | 84 | 2.2315 |
| 1.5934 | 4.0 | 112 | 2.2831 |
| 1.4509 | 5.0 | 140 | 2.3071 |
| 1.3409 | 6.0 | 168 | 2.4755 |
| 1.2542 | 7.0 | 196 | 2.4905 |
| 1.179 | 8.0 | 224 | 2.6153 |
| 1.1211 | 9.0 | 252 | 2.6870 |
| 1.0801 | 10.0 | 280 | 2.7418 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |