bpmn-task-extractor / README.md
rkrstacic's picture
update model card README.md
d755e29
|
raw
history blame
2.31 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bpmn-task-extractor
    results: []

bpmn-task-extractor

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5015
  • Precision: 0.625
  • Recall: 0.5
  • F1: 0.5556
  • Accuracy: 0.8202

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 1 1.6651 0.0 0.0 0.0 0.2584
No log 2.0 2 1.1847 0.1818 0.1 0.1290 0.6517
No log 3.0 3 0.9826 0.5556 0.25 0.3448 0.6966
No log 4.0 4 0.8535 0.5556 0.25 0.3448 0.6966
No log 5.0 5 0.7485 0.7 0.35 0.4667 0.7303
No log 6.0 6 0.6552 0.5833 0.35 0.4375 0.7528
No log 7.0 7 0.5839 0.5 0.35 0.4118 0.7753
No log 8.0 8 0.5431 0.6429 0.45 0.5294 0.7978
No log 9.0 9 0.5158 0.625 0.5 0.5556 0.8202
No log 10.0 10 0.5015 0.625 0.5 0.5556 0.8202

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1