riteshbehera857's picture
End of training
368f876 verified
---
library_name: transformers
license: mit
base_model: riteshbehera857/layoutlm-base-uncased-finetuned-invoices-2
tags:
- generated_from_trainer
model-index:
- name: layoutlm-base-uncased-finetuned-invoices-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlm-base-uncased-finetuned-invoices-3
This model is a fine-tuned version of [riteshbehera857/layoutlm-base-uncased-finetuned-invoices-2](https://huggingface.co/riteshbehera857/layoutlm-base-uncased-finetuned-invoices-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0163
- B-adress: {'precision': 0.9780666125101544, 'recall': 0.9868852459016394, 'f1': 0.9824561403508772, 'number': 1220}
- B-name: {'precision': 0.9794117647058823, 'recall': 0.9881305637982196, 'f1': 0.983751846381093, 'number': 337}
- Gst no: {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126}
- Invoice no: {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105}
- Order date: {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128}
- Order id: {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130}
- S-adress: {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007}
- S-name: {'precision': 0.9937629937629938, 'recall': 0.9958333333333333, 'f1': 0.9947970863683663, 'number': 480}
- Total gross: {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50}
- Total net: {'precision': 0.984251968503937, 'recall': 0.9920634920634921, 'f1': 0.9881422924901185, 'number': 126}
- Overall Precision: 0.9871
- Overall Recall: 0.9913
- Overall F1: 0.9892
- Overall Accuracy: 0.9964
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | B-adress | B-name | Gst no | Invoice no | Order date | Order id | S-adress | S-name | Total gross | Total net | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0175 | 1.0 | 19 | 0.0149 | {'precision': 0.9780130293159609, 'recall': 0.9844262295081967, 'f1': 0.9812091503267973, 'number': 1220} | {'precision': 0.9793510324483776, 'recall': 0.9851632047477745, 'f1': 0.9822485207100592, 'number': 337} | {'precision': 1.0, 'recall': 0.9841269841269841, 'f1': 0.9919999999999999, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9940387481371088, 'recall': 0.9970104633781763, 'f1': 0.9955223880597015, 'number': 2007} | {'precision': 0.9958333333333333, 'recall': 0.9958333333333333, 'f1': 0.9958333333333333, 'number': 480} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} | {'precision': 0.946969696969697, 'recall': 0.9920634920634921, 'f1': 0.9689922480620156, 'number': 126} | 0.9856 | 0.9911 | 0.9884 | 0.9961 |
| 0.0131 | 2.0 | 38 | 0.0163 | {'precision': 0.9780666125101544, 'recall': 0.9868852459016394, 'f1': 0.9824561403508772, 'number': 1220} | {'precision': 0.9794117647058823, 'recall': 0.9881305637982196, 'f1': 0.983751846381093, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} | {'precision': 0.9937629937629938, 'recall': 0.9958333333333333, 'f1': 0.9947970863683663, 'number': 480} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} | {'precision': 0.984251968503937, 'recall': 0.9920634920634921, 'f1': 0.9881422924901185, 'number': 126} | 0.9871 | 0.9913 | 0.9892 | 0.9964 |
| 0.0111 | 3.0 | 57 | 0.0180 | {'precision': 0.9826732673267327, 'recall': 0.9762295081967213, 'f1': 0.9794407894736842, 'number': 1220} | {'precision': 0.9736842105263158, 'recall': 0.9881305637982196, 'f1': 0.9808541973490427, 'number': 337} | {'precision': 1.0, 'recall': 0.9682539682539683, 'f1': 0.9838709677419354, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} | {'precision': 0.9937106918238994, 'recall': 0.9875, 'f1': 0.9905956112852665, 'number': 480} | {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} | {'precision': 0.984, 'recall': 0.9761904761904762, 'f1': 0.9800796812749003, 'number': 126} | 0.9877 | 0.9875 | 0.9876 | 0.9960 |
| 0.0096 | 4.0 | 76 | 0.0202 | {'precision': 0.9811165845648604, 'recall': 0.9795081967213115, 'f1': 0.9803117309269893, 'number': 1220} | {'precision': 0.9851632047477745, 'recall': 0.9851632047477745, 'f1': 0.9851632047477745, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9964912280701754, 'recall': 0.9905331340308918, 'f1': 0.993503248375812, 'number': 2007} | {'precision': 0.9676113360323887, 'recall': 0.9958333333333333, 'f1': 0.9815195071868584, 'number': 480} | {'precision': 0.8620689655172413, 'recall': 1.0, 'f1': 0.9259259259259259, 'number': 50} | {'precision': 1.0, 'recall': 0.9444444444444444, 'f1': 0.9714285714285714, 'number': 126} | 0.9858 | 0.9851 | 0.9854 | 0.9957 |
| 0.0086 | 5.0 | 95 | 0.0188 | {'precision': 0.9787408013082584, 'recall': 0.9811475409836066, 'f1': 0.9799426934097422, 'number': 1220} | {'precision': 0.9852507374631269, 'recall': 0.9910979228486647, 'f1': 0.9881656804733727, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9960179193628671, 'recall': 0.9970104633781763, 'f1': 0.9965139442231075, 'number': 2007} | {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} | {'precision': 0.847457627118644, 'recall': 1.0, 'f1': 0.9174311926605504, 'number': 50} | {'precision': 0.9761904761904762, 'recall': 0.9761904761904762, 'f1': 0.9761904761904762, 'number': 126} | 0.9867 | 0.9890 | 0.9878 | 0.9960 |
| 0.0102 | 6.0 | 114 | 0.0185 | {'precision': 0.9827302631578947, 'recall': 0.9795081967213115, 'f1': 0.9811165845648604, 'number': 1220} | {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9624060150375939, 'recall': 0.9846153846153847, 'f1': 0.973384030418251, 'number': 130} | {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} | {'precision': 0.9937369519832986, 'recall': 0.9916666666666667, 'f1': 0.9927007299270073, 'number': 480} | {'precision': 0.9259259259259259, 'recall': 1.0, 'f1': 0.9615384615384615, 'number': 50} | {'precision': 0.9920634920634921, 'recall': 0.9920634920634921, 'f1': 0.9920634920634921, 'number': 126} | 0.9879 | 0.9892 | 0.9885 | 0.9963 |
| 0.0084 | 7.0 | 133 | 0.0201 | {'precision': 0.9747762408462164, 'recall': 0.9819672131147541, 'f1': 0.9783585136790527, 'number': 1220} | {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9622641509433962, 'recall': 0.9714285714285714, 'f1': 0.9668246445497629, 'number': 105} | {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} | {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} | {'precision': 0.9259259259259259, 'recall': 1.0, 'f1': 0.9615384615384615, 'number': 50} | {'precision': 0.9920634920634921, 'recall': 0.9920634920634921, 'f1': 0.9920634920634921, 'number': 126} | 0.9867 | 0.9892 | 0.9879 | 0.9960 |
| 0.0078 | 8.0 | 152 | 0.0201 | {'precision': 0.9819672131147541, 'recall': 0.9819672131147541, 'f1': 0.9819672131147541, 'number': 1220} | {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.96875, 'recall': 0.96875, 'f1': 0.96875, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9950273495773247, 'recall': 0.9970104633781763, 'f1': 0.9960179193628671, 'number': 2007} | {'precision': 0.9937629937629938, 'recall': 0.9958333333333333, 'f1': 0.9947970863683663, 'number': 480} | {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} | {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} | 0.9875 | 0.9898 | 0.9887 | 0.9963 |
| 0.0064 | 9.0 | 171 | 0.0206 | {'precision': 0.9804081632653061, 'recall': 0.9844262295081967, 'f1': 0.9824130879345603, 'number': 1220} | {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9770992366412213, 'recall': 0.9846153846153847, 'f1': 0.9808429118773947, 'number': 130} | {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} | {'precision': 0.9937629937629938, 'recall': 0.9958333333333333, 'f1': 0.9947970863683663, 'number': 480} | {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} | {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} | 0.9873 | 0.9904 | 0.9889 | 0.9964 |
| 0.0062 | 10.0 | 190 | 0.0213 | {'precision': 0.9795751633986928, 'recall': 0.9827868852459016, 'f1': 0.9811783960720132, 'number': 1220} | {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9696969696969697, 'recall': 0.9846153846153847, 'f1': 0.9770992366412214, 'number': 130} | {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} | {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} | {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} | {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} | 0.9869 | 0.9894 | 0.9881 | 0.9962 |
| 0.0056 | 11.0 | 209 | 0.0218 | {'precision': 0.9819227608874281, 'recall': 0.9795081967213115, 'f1': 0.9807139926138695, 'number': 1220} | {'precision': 0.9766081871345029, 'recall': 0.9910979228486647, 'f1': 0.9837997054491899, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9965122072745392, 'recall': 0.9965122072745392, 'f1': 0.9965122072745392, 'number': 2007} | {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} | {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} | {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} | 0.9881 | 0.9883 | 0.9882 | 0.9962 |
| 0.0052 | 12.0 | 228 | 0.0217 | {'precision': 0.980440097799511, 'recall': 0.9860655737704918, 'f1': 0.98324478953821, 'number': 1220} | {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9955201592832255, 'recall': 0.9965122072745392, 'f1': 0.9960159362549801, 'number': 2007} | {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} | {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} | {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} | 0.9875 | 0.9900 | 0.9888 | 0.9964 |
| 0.0049 | 13.0 | 247 | 0.0225 | {'precision': 0.9812091503267973, 'recall': 0.9844262295081967, 'f1': 0.9828150572831423, 'number': 1220} | {'precision': 0.9766081871345029, 'recall': 0.9910979228486647, 'f1': 0.9837997054491899, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} | {'precision': 0.9965104685942173, 'recall': 0.9960139511709019, 'f1': 0.9962621480189384, 'number': 2007} | {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} | {'precision': 0.9259259259259259, 'recall': 1.0, 'f1': 0.9615384615384615, 'number': 50} | {'precision': 0.9920634920634921, 'recall': 0.9920634920634921, 'f1': 0.9920634920634921, 'number': 126} | 0.9883 | 0.9898 | 0.9891 | 0.9965 |
| 0.0052 | 14.0 | 266 | 0.0224 | {'precision': 0.9811937857726901, 'recall': 0.9836065573770492, 'f1': 0.98239869013508, 'number': 1220} | {'precision': 0.9766081871345029, 'recall': 0.9910979228486647, 'f1': 0.9837997054491899, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9770992366412213, 'recall': 0.9846153846153847, 'f1': 0.9808429118773947, 'number': 130} | {'precision': 0.9955201592832255, 'recall': 0.9965122072745392, 'f1': 0.9960159362549801, 'number': 2007} | {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} | {'precision': 0.992, 'recall': 0.9841269841269841, 'f1': 0.9880478087649401, 'number': 126} | 0.9875 | 0.9896 | 0.9885 | 0.9964 |
| 0.0046 | 15.0 | 285 | 0.0224 | {'precision': 0.9811629811629812, 'recall': 0.9819672131147541, 'f1': 0.9815649324047521, 'number': 1220} | {'precision': 0.9766081871345029, 'recall': 0.9910979228486647, 'f1': 0.9837997054491899, 'number': 337} | {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} | {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} | {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} | {'precision': 0.9770992366412213, 'recall': 0.9846153846153847, 'f1': 0.9808429118773947, 'number': 130} | {'precision': 0.9955201592832255, 'recall': 0.9965122072745392, 'f1': 0.9960159362549801, 'number': 2007} | {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} | {'precision': 0.992, 'recall': 0.9841269841269841, 'f1': 0.9880478087649401, 'number': 126} | 0.9875 | 0.9892 | 0.9883 | 0.9963 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1