File size: 35,697 Bytes
8183a66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: As of January 31, 2023, the Company's net operating loss and capital
    loss carryforwards totaled approximately $32.3 billion.
  sentences:
  - What was the percentage change in general and administrative expenses in 2023
    compared to 2022?
  - What was the amount of the company's net operating loss and capital loss carryforwards
    as of January 31, 2023?
  - What are common challenges in pharmaceutical research and development?
- source_sentence: A 0.50% increase in completion factors, which consider aspects
    like claim levels and processing cycles, raises medical costs payable by $585
    million as of December 31, 2023.
  sentences:
  - What were the total assets of Hasbro, Inc. as of December 31, 2023?
  - How does a 0.50% increase in completion factors impact medical costs payable as
    of December 31, 2023?
  - By what percentage did Gaming revenue change in fiscal year 2023 compared to fiscal
    year 2022?
- source_sentence: Alex G. Balazs was appointed as the Executive Vice President and
    Chief Technology Officer effective September 5, 2023.
  sentences:
  - When was Alex G. Balazs appointed as the Executive Vice President and Chief Technology
    Officer?
  - What was AMC's minimum liquidity requirement under the Credit Agreement?
  - What was the nature of the legal action initiated by Aqua-Chem against the company
    in Wisconsin on the same day the company filed its lawsuit?
- source_sentence: Item 8. Financial Statements and Supplementary Data
  sentences:
  - How did the carrying amount of goodwill change from March 31, 2022 to March 31,
    2023?
  - What types of revenue does the payments company generate from its various products
    and services?
  - What is the content of Item 8 in a financial document?
- source_sentence: The company offers Medicare eligible persons under HMO, PPO, Private
    Fee-For-Service, or PFFS, and Special Needs Plans, including Dual Eligible Special
    Needs, or D-SNP, plans in exchange for contractual payments received from CMS.
    With each of these products, the beneficiary receives benefits in excess of Medicare
    FFS, typically including reduced cost sharing, enhanced prescription drug benefits,
    care coordination, data analysis techniques to help identify member needs, complex
    case management, tools to guide members in their health care decisions, care management
    programs, wellness and prevention programs and, in some instances, a reduced monthly
    Part B premium. Most Medicare Advantage plans offer the prescription drug benefit
    under Part D as part of the basic plan, subject to cost sharing and other limitations.
  sentences:
  - What types of Medicare plans does the company offer and what are the key benefits
    provided?
  - What were the total cash discounts provided by AbbVie in 2023, 2022, and 2021?
  - How does a company account for potential liabilities from legal proceedings in
    its financial statements?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7028571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8371428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.87
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9114285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7028571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27904761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09114285714285714
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7028571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8371428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.87
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9114285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8100174465587288
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7773446712018138
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7807079942767247
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6942857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.83
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.87
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9128571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6942857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09128571428571428
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6942857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.83
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.87
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9128571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8078520466243649
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7740147392290249
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7772770435826438
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6914285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8271428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8685714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9114285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6914285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2757142857142857
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1737142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09114285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6914285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8271428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8685714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9114285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8048419939996826
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7705011337868479
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7738179161222841
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6814285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.82
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8628571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.91
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6814285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2733333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17257142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09099999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6814285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.82
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8628571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.91
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7983213130859076
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7624348072562357
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7654098753888775
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6628571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7985714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8414285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8971428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6628571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26619047619047614
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16828571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0897142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6628571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7985714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8414285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8971428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7801763622372425
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7428265306122449
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7467214067895231
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("riphunter7001x/bge-base-financial")
# Run inference
sentences = [
    'The company offers Medicare eligible persons under HMO, PPO, Private Fee-For-Service, or PFFS, and Special Needs Plans, including Dual Eligible Special Needs, or D-SNP, plans in exchange for contractual payments received from CMS. With each of these products, the beneficiary receives benefits in excess of Medicare FFS, typically including reduced cost sharing, enhanced prescription drug benefits, care coordination, data analysis techniques to help identify member needs, complex case management, tools to guide members in their health care decisions, care management programs, wellness and prevention programs and, in some instances, a reduced monthly Part B premium. Most Medicare Advantage plans offer the prescription drug benefit under Part D as part of the basic plan, subject to cost sharing and other limitations.',
    'What types of Medicare plans does the company offer and what are the key benefits provided?',
    'What were the total cash discounts provided by AbbVie in 2023, 2022, and 2021?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7029     |
| cosine_accuracy@3   | 0.8371     |
| cosine_accuracy@5   | 0.87       |
| cosine_accuracy@10  | 0.9114     |
| cosine_precision@1  | 0.7029     |
| cosine_precision@3  | 0.279      |
| cosine_precision@5  | 0.174      |
| cosine_precision@10 | 0.0911     |
| cosine_recall@1     | 0.7029     |
| cosine_recall@3     | 0.8371     |
| cosine_recall@5     | 0.87       |
| cosine_recall@10    | 0.9114     |
| cosine_ndcg@10      | 0.81       |
| cosine_mrr@10       | 0.7773     |
| **cosine_map@100**  | **0.7807** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6943     |
| cosine_accuracy@3   | 0.83       |
| cosine_accuracy@5   | 0.87       |
| cosine_accuracy@10  | 0.9129     |
| cosine_precision@1  | 0.6943     |
| cosine_precision@3  | 0.2767     |
| cosine_precision@5  | 0.174      |
| cosine_precision@10 | 0.0913     |
| cosine_recall@1     | 0.6943     |
| cosine_recall@3     | 0.83       |
| cosine_recall@5     | 0.87       |
| cosine_recall@10    | 0.9129     |
| cosine_ndcg@10      | 0.8079     |
| cosine_mrr@10       | 0.774      |
| **cosine_map@100**  | **0.7773** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6914     |
| cosine_accuracy@3   | 0.8271     |
| cosine_accuracy@5   | 0.8686     |
| cosine_accuracy@10  | 0.9114     |
| cosine_precision@1  | 0.6914     |
| cosine_precision@3  | 0.2757     |
| cosine_precision@5  | 0.1737     |
| cosine_precision@10 | 0.0911     |
| cosine_recall@1     | 0.6914     |
| cosine_recall@3     | 0.8271     |
| cosine_recall@5     | 0.8686     |
| cosine_recall@10    | 0.9114     |
| cosine_ndcg@10      | 0.8048     |
| cosine_mrr@10       | 0.7705     |
| **cosine_map@100**  | **0.7738** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6814     |
| cosine_accuracy@3   | 0.82       |
| cosine_accuracy@5   | 0.8629     |
| cosine_accuracy@10  | 0.91       |
| cosine_precision@1  | 0.6814     |
| cosine_precision@3  | 0.2733     |
| cosine_precision@5  | 0.1726     |
| cosine_precision@10 | 0.091      |
| cosine_recall@1     | 0.6814     |
| cosine_recall@3     | 0.82       |
| cosine_recall@5     | 0.8629     |
| cosine_recall@10    | 0.91       |
| cosine_ndcg@10      | 0.7983     |
| cosine_mrr@10       | 0.7624     |
| **cosine_map@100**  | **0.7654** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6629     |
| cosine_accuracy@3   | 0.7986     |
| cosine_accuracy@5   | 0.8414     |
| cosine_accuracy@10  | 0.8971     |
| cosine_precision@1  | 0.6629     |
| cosine_precision@3  | 0.2662     |
| cosine_precision@5  | 0.1683     |
| cosine_precision@10 | 0.0897     |
| cosine_recall@1     | 0.6629     |
| cosine_recall@3     | 0.7986     |
| cosine_recall@5     | 0.8414     |
| cosine_recall@10    | 0.8971     |
| cosine_ndcg@10      | 0.7802     |
| cosine_mrr@10       | 0.7428     |
| **cosine_map@100**  | **0.7467** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 2 tokens</li><li>mean: 45.98 tokens</li><li>max: 208 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.76 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                        | anchor                                                                                                                                                                         |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Adjusted EBITDA does not reflect costs associated with product recall related matters including adjustments to the return reserves, inventory write-downs, logistics costs associated with Member requests, the cost to move the recalled product for those that elect the option, subscription waiver costs of service, and recall-related hardware development and repair costs.</code> | <code>What specific costs associated with product recalls are excluded from Adjusted EBITDA?</code>                                                                            |
  | <code>The Company sold $17,704 million and $10,709 million of trade accounts receivables under this program during the years ended December 31, 2023 and 2022, respectively.</code>                                                                                                                                                                                                             | <code>How much did the Company sell in trade accounts receivables in the year ended December 31, 2023?</code>                                                                  |
  | <code>Free cash flow less equipment finance leases and principal repayments of all other finance leases and financing obligations was -$12,786 million in 2022 and improved to $35,549 million in 2023.</code>                                                                                                                                                                                  | <code>How did the free cash flow less equipment finance leases and principal repayments of all other finance leases and financing obligations change from 2022 to 2023?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.2538 | 100  | 2.4219        | 0.7320                 | 0.7542                 | 0.7582                 | 0.6929                | 0.7561                 |
| 0.5076 | 200  | 0.468         | 0.7343                 | 0.7543                 | 0.7574                 | 0.7044                | 0.7569                 |
| 0.7614 | 300  | 0.3159        | 0.7569                 | 0.7691                 | 0.7749                 | 0.7288                | 0.7713                 |
| 1.0152 | 400  | 0.317         | 0.7455                 | 0.7607                 | 0.7646                 | 0.7124                | 0.7643                 |
| 1.2690 | 500  | 0.2062        | 0.7465                 | 0.7691                 | 0.7741                 | 0.7211                | 0.7748                 |
| 1.5228 | 600  | 0.1075        | 0.7495                 | 0.7599                 | 0.7696                 | 0.7214                | 0.7697                 |
| 1.7766 | 700  | 0.1079        | 0.7572                 | 0.7660                 | 0.7752                 | 0.7287                | 0.7764                 |
| 2.0305 | 800  | 0.0477        | 0.7447                 | 0.7696                 | 0.7760                 | 0.7211                | 0.7786                 |
| 2.2843 | 900  | 0.0547        | 0.7569                 | 0.7728                 | 0.7757                 | 0.7406                | 0.7746                 |
| 2.5381 | 1000 | 0.0283        | 0.7668                 | 0.7756                 | 0.7823                 | 0.7414                | 0.7841                 |
| 2.7919 | 1100 | 0.0268        | 0.7540                 | 0.7673                 | 0.7766                 | 0.7432                | 0.7748                 |
| 3.0457 | 1200 | 0.0201        | 0.7633                 | 0.7739                 | 0.7799                 | 0.7411                | 0.7775                 |
| 3.2995 | 1300 | 0.0174        | 0.7635                 | 0.7745                 | 0.7856                 | 0.7469                | 0.7851                 |
| 3.5533 | 1400 | 0.0161        | 0.7595                 | 0.7765                 | 0.7825                 | 0.7412                | 0.7782                 |
| 3.8071 | 1500 | 0.0071        | 0.7552                 | 0.7680                 | 0.7754                 | 0.7395                | 0.7739                 |
| 4.0609 | 1600 | 0.009         | 0.7633                 | 0.7767                 | 0.7834                 | 0.7423                | 0.7843                 |
| 4.3147 | 1700 | 0.0079        | 0.7639                 | 0.7714                 | 0.7770                 | 0.7414                | 0.7728                 |
| 4.5685 | 1800 | 0.0109        | 0.7662                 | 0.7775                 | 0.7845                 | 0.7369                | 0.7843                 |
| 4.8223 | 1900 | 0.0024        | 0.7674                 | 0.7732                 | 0.7776                 | 0.7425                | 0.7810                 |
| 5.0761 | 2000 | 0.0052        | 0.7729                 | 0.7746                 | 0.7820                 | 0.7455                | 0.7849                 |
| 5.3299 | 2100 | 0.0022        | 0.7615                 | 0.7754                 | 0.7813                 | 0.7446                | 0.7862                 |
| 5.5838 | 2200 | 0.0065        | 0.7691                 | 0.7761                 | 0.7809                 | 0.7437                | 0.7777                 |
| 5.8376 | 2300 | 0.0011        | 0.7672                 | 0.7728                 | 0.7757                 | 0.7446                | 0.7772                 |
| 6.0914 | 2400 | 0.0046        | 0.7671                 | 0.7778                 | 0.7805                 | 0.7494                | 0.7838                 |
| 6.3452 | 2500 | 0.0013        | 0.7655                 | 0.7732                 | 0.7780                 | 0.7478                | 0.7806                 |
| 6.5990 | 2600 | 0.0058        | 0.7673                 | 0.7753                 | 0.7779                 | 0.7542                | 0.7797                 |
| 6.8528 | 2700 | 0.001         | 0.7654                 | 0.7716                 | 0.7738                 | 0.7535                | 0.7776                 |
| 7.1066 | 2800 | 0.0071        | 0.7684                 | 0.7754                 | 0.7792                 | 0.7518                | 0.7824                 |
| 7.3604 | 2900 | 0.001         | 0.7723                 | 0.7765                 | 0.7814                 | 0.7502                | 0.7826                 |
| 7.6142 | 3000 | 0.0028        | 0.7720                 | 0.7754                 | 0.7807                 | 0.7498                | 0.7806                 |
| 7.8680 | 3100 | 0.0007        | 0.7685                 | 0.7728                 | 0.7773                 | 0.7475                | 0.7816                 |
| 8.1218 | 3200 | 0.004         | 0.7690                 | 0.7741                 | 0.7773                 | 0.7496                | 0.7806                 |
| 8.3756 | 3300 | 0.0006        | 0.7683                 | 0.7723                 | 0.7755                 | 0.7491                | 0.7791                 |
| 8.6294 | 3400 | 0.0011        | 0.7678                 | 0.7724                 | 0.7756                 | 0.7508                | 0.7804                 |
| 8.8832 | 3500 | 0.0006        | 0.7655                 | 0.7721                 | 0.7769                 | 0.7467                | 0.7825                 |
| 9.1371 | 3600 | 0.0013        | 0.7674                 | 0.7751                 | 0.7788                 | 0.7463                | 0.7802                 |
| 9.3909 | 3700 | 0.0006        | 0.7664                 | 0.7741                 | 0.7793                 | 0.7468                | 0.7821                 |
| 9.6447 | 3800 | 0.0011        | 0.7662                 | 0.7753                 | 0.7782                 | 0.7481                | 0.7803                 |
| 9.8985 | 3900 | 0.0005        | 0.7654                 | 0.7738                 | 0.7773                 | 0.7467                | 0.7807                 |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->