File size: 8,124 Bytes
ea92cde 7055e81 2ea0590 ea92cde 7055e81 69528c9 7055e81 5daf5c0 7055e81 2a52564 7055e81 5daf5c0 2ea0590 5daf5c0 2ea0590 5daf5c0 2ea0590 5daf5c0 2ea0590 5daf5c0 7055e81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
license: mit
datasets:
- conceptual_12m
- HuggingFaceM4/COCO
- visual_genome
language:
- ja
- en
pipeline_tag: image-text-to-text
---
# bilingual-gpt-neox-4b-minigpt4
![rinna-icon](./rinna.png)
# Overview
This repository provides an English-Japanese bilingual multimodal conversational model like MiniGPT-4 by combining GPT-NeoX model of 3.8 billion parameters and BLIP-2.
The model is based on [`rinna/bilingual-gpt-neox-4b`](https://huggingface.co/rinna/bilingual-gpt-neox-4b) and [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2).
* **Model architecture**
Similar with [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2) and [Vision-CAIR/MiniGPT-4](https://huggingface.co/Vision-CAIR/MiniGPT-4), the model consists of an LLM, vision-encoder with ViT and Q-Former, and linear-layer for connecting the LLM and vision-encoder.
[`rinna/bilingual-gpt-neox-4b`](https://huggingface.co/rinna/bilingual-gpt-neox-4b) (A 36-layer, 2816-hidden-size transformer-based language model) is used as the LLM instead of [Vicuna](https://github.com/lm-sys/FastChat), which is used in the original [Vision-CAIR/MiniGPT-4](https://huggingface.co/Vision-CAIR/MiniGPT-4).
* **Finetuning**
The finetuning data is the subset of the following datasets.
* English datasets
* [Conceptual 12M (CC12M)](https://huggingface.co/datasets/conceptual_12m)
* [COCO 2014](https://huggingface.co/datasets/HuggingFaceM4/COCO)
* [Visual Genome](https://huggingface.co/datasets/visual_genome)
* Japanese datasets
* [STAIR-captions](https://github.com/STAIR-Lab-CIT/STAIR-captions)
* [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa)
Based on the implementation of [Vision-CAIR/MiniGPT-4](https://huggingface.co/Vision-CAIR/MiniGPT-4), only "first pretraining stage" described in [MiniGPT-4 paper](https://arxiv.org/abs/2304.10592) with the above datasets was conducted, and "second-stage finetuning" proposed in the paper with an aligned image-text dataset created with ChatGPT was NOT conducted.
* **Model Series**
| Variant | Link |
| :-- | :--|
| Bilingual 4B MiniGPT4 | https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4 |
| Bilingual 4B PPO | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo |
| Bilingual 4B SFT | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft |
| Bilingual 4B 8K | https://huggingface.co/rinna/bilingual-gpt-neox-4b-8k |
| Bilingual 4B | https://huggingface.co/rinna/bilingual-gpt-neox-4b |
| Japanese 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo |
| Japanese 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 |
| Japanese 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft |
| Japanese 3.6B | https://huggingface.co/rinna/japanese-gpt-neox-3.6b |
* **Contributors**
[Koh Mitsuda](https://huggingface.co/mitsu-koh), [Tianyu Zhao](https://huggingface.co/tianyuz), and [Kei Sawada](https://huggingface.co/keisawada)
---
# I/O Format
A special format has been adopted to construct inputs.
* An input prompt is formatted as a conversation between `ユーザー` and `システム`.
* Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"猫はどんな体勢をしていますか?"`).
* An utterance including an image is formatted as (1) its speaker (`"ユーザー"`), (2) a colon (`":"`), (3) a whitespace (`" "`), (4) a placeholder of the image (`"<Img><ImageHere></Img>"`), (5) another whitespace (`" "`), (6) utterance text (e.g. `"What can you see?"`).
* The placeholder (`<ImageHere>`) is automatically replaced with the embedding of an input image in the function `get_context_emb`.
* The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response.
* All the utterances in the input prompt should be separated by a newline `\n`.
Following is an example to construct input from a conversation.
~~~python
prompt = [
{
"speaker": "ユーザー",
"text": "<Img><ImageHere></Img> What can you see?"
},
{
"speaker": "システム",
"text": "a cat on a table with a laptop"
},
{
"speaker": "ユーザー",
"text": "猫はどんな体勢をしていますか?"
},
]
prompt = [
f"{uttr['speaker']}: {uttr['text']}"
for uttr in prompt
]
prompt = "\n".join(prompt)
prompt = (
prompt
+ "\n"
+ "システム: "
)
print(prompt)
"""
ユーザー: <Img><ImageHere></Img> What can you see?
システム: a cat on a table with a laptop
ユーザー: 猫はどんな体勢をしていますか?
システム:
"""
~~~
---
# How to use the model
**1. Download dependencies**
* BLIP-2 implementation included in MiniGPT-4 is used for inference.
* `customized_mini_gpt4.py` is a script to replace LLM from LLaMA architecture to GPT-NeoX one.
* `checkpoint.pth` is a finetuned weight of the linear layer (file size: 177 MB).
```bash
git clone https://github.com/Vision-CAIR/MiniGPT-4.git
cd ./MiniGPT-4
git checkout 22d8888 # latest version as of July 31, 2023.
wget https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/customized_mini_gpt4.py
wget https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/checkpoint.pth
```
**2. Inference**
Please run this script in `MiniGPT-4` directory.
~~~~python
import torch
import requests
from PIL import Image
from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
from customized_mini_gpt4 import CustomizedMiniGPT4
ckpt_path = "./checkpoint.pth"
model = CustomizedMiniGPT4(gpt_neox_model="rinna/bilingual-gpt-neox-4b")
tokenizer = model.gpt_neox_tokenizer
if torch.cuda.is_available():
model = model.to("cuda")
if ckpt_path is not None:
print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(ckpt['model'], strict=False)
vis_processor = Blip2ImageEvalProcessor()
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
image = vis_processor(raw_image).unsqueeze(0).to(model.device)
image_emb = model.encode_img(image)
embs = model.get_context_emb(prompt, [image_emb])
output_ids = model.gpt_neox_model.generate(
inputs_embeds=embs,
max_new_tokens=512,
do_sample=True,
temperature=1.0,
top_p=0.85,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0], skip_special_tokens=True)
print(output)
"""横になっています。"""
~~~~
---
# How to cite
```bibtex
@misc{rinna-bilingual-gpt-neox-4b-minigpt4,
title = {rinna/bilingual-gpt-neox-4b-minigpt4},
author = {Mitsuda, Koh and Zhao, Tianyu and Sawada, Kei},
url = {https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---
# Acknowledgement
* [Vision-CAIR/MiniGPT-4](https://huggingface.co/Vision-CAIR/MiniGPT-4)
* [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2)
* [Lavis](https://github.com/salesforce/LAVIS)
# Licenese
[The MIT license](https://opensource.org/licenses/MIT) |