Image-Text-to-Text
Japanese
English
File size: 7,137 Bytes
ea92cde
 
7055e81
 
 
 
 
 
 
ea92cde
7055e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
license: mit
datasets:
- conceptual_12m
- HuggingFaceM4/COCO
- visual_genome
language:
- ja
- en
---


# bilingual-gpt-neox-4b-minigpt4

![rinna-icon](./rinna.png)

# Overview
This repository provides an English-Japanese bilingual multimodal conversational model like MiniGPT-4 by combining GPT-NeoX model of 3.8 billion parameters and BLIP-2.

The model is based on [`rinna/bilingual-gpt-neox-4b`](https://huggingface.co/rinna/bilingual-gpt-neox-4b) and [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2).

* **Model architecture**

    Similar with [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2) and [Vision-CAIR/MiniGPT-4](https://huggingface.co/Vision-CAIR/MiniGPT-4), the model consists of an LLM, vision-encoder with ViT and Q-Former, and linear-layer for connecting the LLM and vision-encoder.

    [`rinna/bilingual-gpt-neox-4b`](https://huggingface.co/rinna/bilingual-gpt-neox-4b) (A 36-layer, 2816-hidden-size transformer-based language model) is used as the LLM instead of [Vicuna](https://github.com/lm-sys/FastChat), which is used in the original [Vision-CAIR/MiniGPT-4](https://huggingface.co/Vision-CAIR/MiniGPT-4).

* **Finetuning**
    
    The finetuning data is the subset of the following datasets.
    * English datasets
      * [Conceptual 12M (CC12M)](https://huggingface.co/datasets/conceptual_12m)
      * [COCO 2014](https://huggingface.co/datasets/HuggingFaceM4/COCO)
      * [Visual Genome](https://huggingface.co/datasets/visual_genome)
    * Japanese datasets
      * [STAIR-captions](https://github.com/STAIR-Lab-CIT/STAIR-captions)
      * [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa)

    Based on the implementation of [Vision-CAIR/MiniGPT-4](https://huggingface.co/Vision-CAIR/MiniGPT-4), only "first pretraining stage" described in [MiniGPT-4 paper](https://arxiv.org/abs/2304.10592) with the above datasets was conducted, and "second-stage finetuning" proposed in the paper with an aligned image-text dataset created with ChatGPT was NOT conducted.
  
* **Model Series**

    | Variant | Link |
    | :-- | :--|
    | Bilingual 4B MiniGPT4 | https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4 |
    | Bilingual 4B SFT | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft |
    | Bilingual 4B 8K | https://huggingface.co/rinna/bilingual-gpt-neox-4b-8k |
    | Bilingual 4B | https://huggingface.co/rinna/bilingual-gpt-neox-4b |
    | Japanese 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo |
    | Japanese 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 |
    | Japanese 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft |
    | Japanese 3.6B | https://huggingface.co/rinna/japanese-gpt-neox-3.6b |

* **Authors**
    
    [Koh Mitsuda](https://huggingface.co/mitsu-koh), [Tianyu Zhao](https://huggingface.co/tianyuz), and [Kei Sawada](https://huggingface.co/keisawada)

---

# I/O Format
A special format has been adopted to construct inputs.
* An input prompt is formatted as a conversation between `ユーザー` and `システム`.
* Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"猫はどんな体勢をしていますか?"`).
* An utterance including an image is formatted as (1) its speaker (`"ユーザー"`), (2) a colon (`":"`), (3) a whitespace (`" "`), (4) a placeholder of the image (`"<Img><ImageHere></Img>"`), (5) another whitespace (`" "`), (6) utterance text (e.g. `"What can you see?"`).  
  * The placeholder (`<ImageHere>`) is automatically replaced with the embedding of an input image in the function `get_context_emb`.
* The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response.
* All the utterances in the input prompt should be separated by a newline `\n`.

Following is an example to construct input from a conversation.
~~~python
prompt = [
    {
        "speaker": "ユーザー",
        "text": "<Img><ImageHere></Img> What can you see?"
    },
    {
        "speaker": "システム",
        "text": "a cat on a table with a laptop"
    },
    {
        "speaker": "ユーザー",
        "text": "猫はどんな体勢をしていますか?"
    },
]
prompt = [
    f"{uttr['speaker']}: {uttr['text']}"
    for uttr in prompt
]
prompt = "\n".join(prompt)
prompt = (
    prompt
    + "\n"
    + "システム: "
)
print(prompt)
"""
ユーザー: <Img><ImageHere></Img> What can you see?
システム: a cat on a table with a laptop
ユーザー: 猫はどんな体勢をしていますか?
システム: 
"""
~~~

---

# How to use the model

**1. Download dependencies**

* BLIP-2 implementation included in MiniGPT-4 is used for inference.
* `customized_mini_gpt4.py` is a script to replace LLM from LLaMA architecture to GPT-NeoX one.
* `checkpoint.pth` is a finetuned weight of the linear layer (file size: 177 MB).

```bash
git clone https://github.com/Vision-CAIR/MiniGPT-4.git
cd ./MiniGPT-4
git checkout 22d8888 # latest version as of July 31, 2023.
wget https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/customized_mini_gpt4.py
wget https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/checkpoint.pth
```

**2. Inference**

Please run this script in `MiniGPT-4` directory.

~~~~python
import torch
import requests
from PIL import Image
from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
from customized_mini_gpt4 import CustomizedMiniGPT4

ckpt_path = "./checkpoint.pth"

model = CustomizedMiniGPT4(gpt_neox_model="rinna/bilingual-gpt-neox-4b")
tokenizer = model.gpt_neox_tokenizer

if torch.cuda.is_available():
    model = model.to("cuda")

if ckpt_path is not None:
    print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path))
    ckpt = torch.load(ckpt_path, map_location="cpu")
    model.load_state_dict(ckpt['model'], strict=False)

vis_processor = Blip2ImageEvalProcessor()

image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4-preview/resolve/main/sample.jpg"
raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
image = vis_processor(raw_image).unsqueeze(0).to(model.device)
image_emb = model.encode_img(image)

embs = model.get_context_emb(prompt, [image_emb])

output_ids = model.gpt_neox_model.generate(
    inputs_embeds=embs,
    max_new_tokens=512,
    do_sample=True,
    temperature=1.0,
    top_p=0.85,
    pad_token_id=tokenizer.pad_token_id,
    bos_token_id=tokenizer.bos_token_id,
    eos_token_id=tokenizer.eos_token_id
)

output = tokenizer.decode(output_ids.tolist()[0], skip_special_tokens=True)
print(output)
"""横になっています。"""
~~~~

---

# Acknowledgement

* [Vision-CAIR/MiniGPT-4](https://huggingface.co/Vision-CAIR/MiniGPT-4)
  * [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2)
  * [Lavis](https://github.com/salesforce/LAVIS)

# Licenese
[The MIT license](https://opensource.org/licenses/MIT)