File size: 37,074 Bytes
918c232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
from multiprocessing import cpu_count
import threading
from time import sleep
from subprocess import Popen,PIPE,run as runn
from time import sleep
import torch, pdb, os,traceback,sys,warnings,shutil,numpy as np,faiss
#判断是否有能用来训练和加速推理的N卡
ncpu=cpu_count()
ngpu=torch.cuda.device_count()
gpu_infos=[]
if(torch.cuda.is_available()==False or ngpu==0):if_gpu_ok=False
else:
    if_gpu_ok = False
    for i in range(ngpu):
        gpu_name=torch.cuda.get_device_name(i)
        if("16"in gpu_name or "MX"in gpu_name):continue
        if("10"in gpu_name or "20"in gpu_name or "30"in gpu_name or "40"in gpu_name or "A50"in gpu_name.upper() or "70"in gpu_name or "80"in gpu_name or "90"in gpu_name or "M4"in gpu_name or "T4"in gpu_name or "TITAN"in gpu_name.upper()):#A10#A100#V100#A40#P40#M40#K80
            if_gpu_ok=True#至少有一张能用的N卡
            gpu_infos.append("%s\t%s"%(i,gpu_name))
gpu_info="\n".join(gpu_infos)if if_gpu_ok==True and len(gpu_infos)>0 else "很遗憾您这没有能用的显卡来支持您训练"
gpus="-".join([i[0]for i in gpu_infos])
now_dir=os.getcwd()
sys.path.append(now_dir)
tmp=os.path.join(now_dir,"TEMP")
shutil.rmtree(tmp,ignore_errors=True)
os.makedirs(tmp,exist_ok=True)
os.makedirs(os.path.join(now_dir,"logs"),exist_ok=True)
os.makedirs(os.path.join(now_dir,"weights"),exist_ok=True)
os.environ["TEMP"]=tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from scipy.io import wavfile
from fairseq import checkpoint_utils
import gradio as gr
import librosa
import logging
from vc_infer_pipeline import VC
import soundfile as sf
from config import is_half,device,is_half
from infer_uvr5 import _audio_pre_
from my_utils import load_audio
from train.process_ckpt import show_info,change_info,merge,extract_small_model
# from trainset_preprocess_pipeline import PreProcess
logging.getLogger('numba').setLevel(logging.WARNING)

class ToolButton(gr.Button, gr.components.FormComponent):
    """Small button with single emoji as text, fits inside gradio forms"""
    def __init__(self, **kwargs):
        super().__init__(variant="tool", **kwargs)
    def get_block_name(self):
        return "button"

hubert_model=None
def load_hubert():
    global hubert_model
    models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",)
    hubert_model = models[0]
    hubert_model = hubert_model.to(device)
    if(is_half):hubert_model = hubert_model.half()
    else:hubert_model = hubert_model.float()
    hubert_model.eval()

weight_root="weights"
weight_uvr5_root="uvr5_weights"
names=[]
for name in os.listdir(weight_root):names.append(name)
uvr5_names=[]
for name in os.listdir(weight_uvr5_root):uvr5_names.append(name.replace(".pth",""))

def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,file_big_npy,index_rate):#spk_item, input_audio0, vc_transform0,f0_file,f0method0
    global tgt_sr,net_g,vc,hubert_model
    if input_audio is None:return "You need to upload an audio", None
    f0_up_key = int(f0_up_key)
    try:
        audio=load_audio(input_audio,16000)
        times = [0, 0, 0]
        if(hubert_model==None):load_hubert()
        if_f0 = cpt.get("f0", 1)
        audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file)
        print(times)
        return "Success", (tgt_sr, audio_opt)
    except:
        info=traceback.format_exc()
        print(info)
        return info,(None,None)

def vc_multi(sid,dir_path,opt_root,paths,f0_up_key,f0_method,file_index,file_big_npy,index_rate):
    try:
        dir_path=dir_path.strip(" ")#防止小白拷路径头尾带了空格
        opt_root=opt_root.strip(" ")
        os.makedirs(opt_root, exist_ok=True)
        try:
            if(dir_path!=""):paths=[os.path.join(dir_path,name)for name in os.listdir(dir_path)]
            else:paths=[path.name for path in paths]
        except:
            traceback.print_exc()
            paths = [path.name for path in paths]
        infos=[]
        for path in paths:
            info,opt=vc_single(sid,path,f0_up_key,None,f0_method,file_index,file_big_npy,index_rate)
            if(info=="Success"):
                try:
                    tgt_sr,audio_opt=opt
                    wavfile.write("%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt)
                except:
                    info=traceback.format_exc()
            infos.append("%s->%s"%(os.path.basename(path),info))
            yield "\n".join(infos)
        yield "\n".join(infos)
    except:
        yield traceback.format_exc()

def uvr(model_name,inp_root,save_root_vocal,paths,save_root_ins):
    infos = []
    try:
        inp_root = inp_root.strip(" ").strip("\n")
        save_root_vocal = save_root_vocal.strip(" ").strip("\n")
        save_root_ins = save_root_ins.strip(" ").strip("\n")
        pre_fun = _audio_pre_(model_path=os.path.join(weight_uvr5_root,model_name+".pth"), device=device, is_half=is_half)
        if (inp_root != ""):paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
        else:paths = [path.name for path in paths]
        for name in paths:
            inp_path=os.path.join(inp_root,name)
            try:
                pre_fun._path_audio_(inp_path , save_root_ins,save_root_vocal)
                infos.append("%s->Success"%(os.path.basename(inp_path)))
                yield "\n".join(infos)
            except:
                infos.append("%s->%s" % (os.path.basename(inp_path),traceback.format_exc()))
                yield "\n".join(infos)
    except:
        infos.append(traceback.format_exc())
        yield "\n".join(infos)
    finally:
        try:
            del pre_fun.model
            del pre_fun
        except:
            traceback.print_exc()
        print("clean_empty_cache")
        torch.cuda.empty_cache()
    yield "\n".join(infos)

#一个选项卡全局只能有一个音色
def get_vc(sid):
    global n_spk,tgt_sr,net_g,vc,cpt
    if(sid==""):
        global hubert_model
        print("clean_empty_cache")
        del net_g, n_spk, vc, hubert_model,tgt_sr#,cpt
        hubert_model = net_g=n_spk=vc=hubert_model=tgt_sr=None
        torch.cuda.empty_cache()
        ###楼下不这么折腾清理不干净
        if_f0 = cpt.get("f0", 1)
        if (if_f0 == 1):
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
        del net_g,cpt
        torch.cuda.empty_cache()
        cpt=None
        return {"visible": False, "__type__": "update"}
    person = "%s/%s" % (weight_root, sid)
    print("loading %s"%person)
    cpt = torch.load(person, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
    if_f0=cpt.get("f0",1)
    if(if_f0==1):
        net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
    else:
        net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))  # 不加这一行清不干净,真奇葩
    net_g.eval().to(device)
    if (is_half):net_g = net_g.half()
    else:net_g = net_g.float()
    vc = VC(tgt_sr, device, is_half)
    n_spk=cpt["config"][-3]
    return {"visible": True,"maximum": n_spk, "__type__": "update"}

def change_choices():return {"choices": sorted(list(os.listdir(weight_root))), "__type__": "update"}
def clean():return {"value": "", "__type__": "update"}
def change_f0(if_f0_3,sr2):#np7, f0method8,pretrained_G14,pretrained_D15
    if(if_f0_3=="是"):return {"visible": True, "__type__": "update"},{"visible": True, "__type__": "update"},"pretrained/f0G%s.pth"%sr2,"pretrained/f0D%s.pth"%sr2
    return {"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"},"pretrained/G%s.pth"%sr2,"pretrained/D%s.pth"%sr2

sr_dict={
    "32k":32000,
    "40k":40000,
    "48k":48000,
}

def if_done(done,p):
    while 1:
        if(p.poll()==None):sleep(0.5)
        else:break
    done[0]=True


def if_done_multi(done,ps):
    while 1:
        #poll==None代表进程未结束
        #只要有一个进程未结束都不停
        flag=1
        for p in ps:
            if(p.poll()==None):
                flag = 0
                sleep(0.5)
                break
        if(flag==1):break
    done[0]=True

def preprocess_dataset(trainset_dir,exp_dir,sr,n_p=ncpu):
    sr=sr_dict[sr]
    os.makedirs("%s/logs/%s"%(now_dir,exp_dir),exist_ok=True)
    f = open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir), "w")
    f.close()
    cmd="runtime\python.exe trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s"%(trainset_dir,sr,n_p,now_dir,exp_dir)
    print(cmd)
    p = Popen(cmd, shell=True)#, stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
    ###煞笔gr,popen read都非得全跑完了再一次性读取,不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
    done=[False]
    threading.Thread(target=if_done,args=(done,p,)).start()
    while(1):
        with open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir),"r")as f:yield(f.read())
        sleep(1)
        if(done[0]==True):break
    with open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir), "r")as f:log = f.read()
    print(log)
    yield log
#but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
def extract_f0_feature(gpus,n_p,f0method,if_f0,exp_dir):
    gpus=gpus.split("-")#
    os.makedirs("%s/logs/%s"%(now_dir,exp_dir),exist_ok=True)
    f = open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "w")
    f.close()
    if(if_f0=="是"):
        cmd="runtime\python.exe extract_f0_print.py %s/logs/%s %s %s"%(now_dir,exp_dir,n_p,f0method)
        print(cmd)
        p = Popen(cmd, shell=True,cwd=now_dir)#, stdin=PIPE, stdout=PIPE,stderr=PIPE
        ###煞笔gr,popen read都非得全跑完了再一次性读取,不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
        done=[False]
        threading.Thread(target=if_done,args=(done,p,)).start()
        while(1):
            with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir),"r")as f:yield(f.read())
            sleep(1)
            if(done[0]==True):break
        with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "r")as f:log = f.read()
        print(log)
        yield log
    ####对不同part分别开多进程
    '''
    n_part=int(sys.argv[1])
    i_part=int(sys.argv[2])
    i_gpu=sys.argv[3]
    exp_dir=sys.argv[4]
    os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
    '''
    leng=len(gpus)
    ps=[]
    for idx,n_g in enumerate(gpus):
        cmd="runtime\python.exe extract_feature_print.py %s %s %s %s/logs/%s"%(leng,idx,n_g,now_dir,exp_dir)
        print(cmd)
        p = Popen(cmd, shell=True, cwd=now_dir)#, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
        ps.append(p)
    ###煞笔gr,popen read都非得全跑完了再一次性读取,不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
    done = [False]
    threading.Thread(target=if_done_multi, args=(done, ps,)).start()
    while (1):
        with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "r")as f:yield (f.read())
        sleep(1)
        if (done[0] == True): break
    with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "r")as f:log = f.read()
    print(log)
    yield log
def change_sr2(sr2,if_f0_3):
    if(if_f0_3=="是"):return "pretrained/f0G%s.pth"%sr2,"pretrained/f0D%s.pth"%sr2
    else:return "pretrained/G%s.pth"%sr2,"pretrained/D%s.pth"%sr2
#but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
def click_train(exp_dir1,sr2,if_f0_3,spk_id5,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16,if_cache_gpu17):
    #生成filelist
    exp_dir="%s/logs/%s"%(now_dir,exp_dir1)
    os.makedirs(exp_dir,exist_ok=True)
    gt_wavs_dir="%s/0_gt_wavs"%(exp_dir)
    co256_dir="%s/3_feature256"%(exp_dir)
    if(if_f0_3=="是"):
        f0_dir = "%s/2a_f0" % (exp_dir)
        f0nsf_dir="%s/2b-f0nsf"%(exp_dir)
        names=set([name.split(".")[0]for name in os.listdir(gt_wavs_dir)])&set([name.split(".")[0]for name in os.listdir(co256_dir)])&set([name.split(".")[0]for name in os.listdir(f0_dir)])&set([name.split(".")[0]for name in os.listdir(f0nsf_dir)])
    else:
        names=set([name.split(".")[0]for name in os.listdir(gt_wavs_dir)])&set([name.split(".")[0]for name in os.listdir(co256_dir)])
    opt=[]
    for name in names:
        if (if_f0_3 == "是"):
            opt.append("%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,f0_dir.replace("\\","\\\\"),name,f0nsf_dir.replace("\\","\\\\"),name,spk_id5))
        else:
            opt.append("%s/%s.wav|%s/%s.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,spk_id5))
    with open("%s/filelist.txt"%exp_dir,"w")as f:f.write("\n".join(opt))
    print("write filelist done")
    #生成config#无需生成config
    # cmd = "runtime\python.exe train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
    cmd = "runtime\python.exe train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,gpus16,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0)
    print(cmd)
    p = Popen(cmd, shell=True, cwd=now_dir)
    p.wait()
    return "训练结束,您可查看控制台训练日志或实验文件夹下的train.log"
# but4.click(train_index, [exp_dir1], info3)
def train_index(exp_dir1):
    exp_dir="%s/logs/%s"%(now_dir,exp_dir1)
    os.makedirs(exp_dir,exist_ok=True)
    feature_dir="%s/3_feature256"%(exp_dir)
    if(os.path.exists(feature_dir)==False):return "请先进行特征提取!"
    listdir_res=list(os.listdir(feature_dir))
    if(len(listdir_res)==0):return "请先进行特征提取!"
    npys = []
    for name in sorted(listdir_res):
        phone = np.load("%s/%s" % (feature_dir, name))
        npys.append(phone)
    big_npy = np.concatenate(npys, 0)
    np.save("%s/total_fea.npy"%exp_dir, big_npy)
    n_ivf = big_npy.shape[0] // 39
    infos=[]
    infos.append("%s,%s"%(big_npy.shape,n_ivf))
    yield "\n".join(infos)
    index = faiss.index_factory(256, "IVF%s,Flat"%n_ivf)
    infos.append("training")
    yield "\n".join(infos)
    index_ivf = faiss.extract_index_ivf(index)  #
    index_ivf.nprobe = int(np.power(n_ivf,0.3))
    index.train(big_npy)
    faiss.write_index(index, '%s/trained_IVF%s_Flat_nprobe_%s.index'%(exp_dir,n_ivf,index_ivf.nprobe))
    infos.append("adding")
    yield "\n".join(infos)
    index.add(big_npy)
    faiss.write_index(index, '%s/added_IVF%s_Flat_nprobe_%s.index'%(exp_dir,n_ivf,index_ivf.nprobe))
    infos.append("成功构建索引,added_IVF%s_Flat_nprobe_%s.index"%(n_ivf,index_ivf.nprobe))
    yield "\n".join(infos)
#but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
def train1key(exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17):
    infos=[]
    def get_info_str(strr):
        infos.append(strr)
        return "\n".join(infos)
    os.makedirs("%s/logs/%s"%(now_dir,exp_dir1),exist_ok=True)
    #########step1:处理数据
    open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir1), "w").close()
    cmd="runtime\python.exe trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s"%(trainset_dir4,sr_dict[sr2],ncpu,now_dir,exp_dir1)
    yield get_info_str("step1:正在处理数据")
    yield get_info_str(cmd)
    p = Popen(cmd, shell=True)
    p.wait()
    with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "r")as f: print(f.read())
    #########step2a:提取音高
    open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "w")
    if(if_f0_3=="是"):
        yield get_info_str("step2a:正在提取音高")
        cmd="runtime\python.exe extract_f0_print.py %s/logs/%s %s %s"%(now_dir,exp_dir1,np7,f0method8)
        yield get_info_str(cmd)
        p = Popen(cmd, shell=True,cwd=now_dir)
        p.wait()
        with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir1), "r")as f:print(f.read())
    else:yield get_info_str("step2a:无需提取音高")
    #######step2b:提取特征
    yield get_info_str("step2b:正在提取特征")
    gpus=gpus16.split("-")
    leng=len(gpus)
    ps=[]
    for idx,n_g in enumerate(gpus):
        cmd="runtime\python.exe extract_feature_print.py %s %s %s %s/logs/%s"%(leng,idx,n_g,now_dir,exp_dir1)
        yield get_info_str(cmd)
        p = Popen(cmd, shell=True, cwd=now_dir)#, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
        ps.append(p)
    for p in ps:p.wait()
    with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir1), "r")as f:print(f.read())
    #######step3a:训练模型
    yield get_info_str("step3a:正在训练模型")
    #生成filelist
    exp_dir="%s/logs/%s"%(now_dir,exp_dir1)
    gt_wavs_dir="%s/0_gt_wavs"%(exp_dir)
    co256_dir="%s/3_feature256"%(exp_dir)
    if(if_f0_3=="是"):
        f0_dir = "%s/2a_f0" % (exp_dir)
        f0nsf_dir="%s/2b-f0nsf"%(exp_dir)
        names=set([name.split(".")[0]for name in os.listdir(gt_wavs_dir)])&set([name.split(".")[0]for name in os.listdir(co256_dir)])&set([name.split(".")[0]for name in os.listdir(f0_dir)])&set([name.split(".")[0]for name in os.listdir(f0nsf_dir)])
    else:
        names=set([name.split(".")[0]for name in os.listdir(gt_wavs_dir)])&set([name.split(".")[0]for name in os.listdir(co256_dir)])
    opt=[]
    for name in names:
        if (if_f0_3 == "是"):
            opt.append("%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,f0_dir.replace("\\","\\\\"),name,f0nsf_dir.replace("\\","\\\\"),name,spk_id5))
        else:
            opt.append("%s/%s.wav|%s/%s.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,spk_id5))
    with open("%s/filelist.txt"%exp_dir,"w")as f:f.write("\n".join(opt))
    yield get_info_str("write filelist done")
    cmd = "runtime\python.exe train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,gpus16,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0)
    yield get_info_str(cmd)
    p = Popen(cmd, shell=True, cwd=now_dir)
    p.wait()
    yield get_info_str("训练结束,您可查看控制台训练日志或实验文件夹下的train.log")
    #######step3b:训练索引
    feature_dir="%s/3_feature256"%(exp_dir)
    npys = []
    listdir_res=list(os.listdir(feature_dir))
    for name in sorted(listdir_res):
        phone = np.load("%s/%s" % (feature_dir, name))
        npys.append(phone)
    big_npy = np.concatenate(npys, 0)
    np.save("%s/total_fea.npy"%exp_dir, big_npy)
    n_ivf = big_npy.shape[0] // 39
    yield get_info_str("%s,%s"%(big_npy.shape,n_ivf))
    index = faiss.index_factory(256, "IVF%s,Flat"%n_ivf)
    yield get_info_str("training index")
    index_ivf = faiss.extract_index_ivf(index)  #
    index_ivf.nprobe = int(np.power(n_ivf,0.3))
    index.train(big_npy)
    faiss.write_index(index, '%s/trained_IVF%s_Flat_nprobe_%s.index'%(exp_dir,n_ivf,index_ivf.nprobe))
    yield get_info_str("adding index")
    index.add(big_npy)
    faiss.write_index(index, '%s/added_IVF%s_Flat_nprobe_%s.index'%(exp_dir,n_ivf,index_ivf.nprobe))
    yield get_info_str("成功构建索引,added_IVF%s_Flat_nprobe_%s.index"%(n_ivf,index_ivf.nprobe))
    yield get_info_str("全流程结束!")

#                    ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
def change_info_(ckpt_path):
    if(os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path),"train.log"))==False):return {"__type__": "update"},{"__type__": "update"}
    try:
        with open(ckpt_path.replace(os.path.basename(ckpt_path),"train.log"),"r")as f:
            info=eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
            sr,f0=info["sample_rate"],info["if_f0"]
            return sr,str(f0)
    except:
        traceback.print_exc()
        return {"__type__": "update"}, {"__type__": "update"}


with gr.Blocks() as app:
    gr.Markdown(value="""
        本软件以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。<br>
        如不认可该条款,则不能使用或引用软件包内任何代码和文件。详见根目录"使用需遵守的协议-LICENSE.txt"。
        """)
    with gr.Tabs():
        with gr.TabItem("模型推理"):
            with gr.Row():
                sid0 = gr.Dropdown(label="推理音色", choices=names)
                refresh_button = gr.Button("刷新音色列表", variant="primary")
                refresh_button.click(
                    fn=change_choices,
                    inputs=[],
                    outputs=[sid0]
                )
                clean_button = gr.Button("卸载音色省显存", variant="primary")
                spk_item = gr.Slider(minimum=0, maximum=2333, step=1, label='请选择说话人id', value=0, visible=False, interactive=True)
                clean_button.click(
                    fn=clean,
                    inputs=[],
                    outputs=[sid0]
                )
                sid0.change(
                    fn=get_vc,
                    inputs=[sid0],
                    outputs=[spk_item],
                )
            with gr.Group():
                gr.Markdown(value="""
                    男转女推荐+12key,女转男推荐-12key,如果音域爆炸导致音色失真也可以自己调整到合适音域。
                    """)
                with gr.Row():
                    with gr.Column():
                        vc_transform0 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=0)
                        input_audio0 = gr.Textbox(label="输入待处理音频文件路径(默认是正确格式示例)",value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs\冬之花clip1.wav")
                        f0method0=gr.Radio(label="选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比", choices=["pm","harvest"],value="pm", interactive=True)
                    with gr.Column():
                        file_index1 = gr.Textbox(label="特征检索库文件路径",value="E:\codes\py39\\vits_vc_gpu_train\logs\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", interactive=True)
                        file_big_npy1 = gr.Textbox(label="特征文件路径",value="E:\codes\py39\\vits_vc_gpu_train\logs\mi-test-1key\\total_fea.npy", interactive=True)
                        index_rate1 =  gr.Slider(minimum=0, maximum=1,label='检索特征占比', value=1,interactive=True)
                    f0_file = gr.File(label="F0曲线文件,可选,一行一个音高,代替默认F0及升降调")
                    but0=gr.Button("转换", variant="primary")
                    with gr.Column():
                        vc_output1 = gr.Textbox(label="输出信息")
                        vc_output2 = gr.Audio(label="输出音频(右下角三个点,点了可以下载)")
                    but0.click(vc_single, [spk_item, input_audio0, vc_transform0,f0_file,f0method0,file_index1,file_big_npy1,index_rate1], [vc_output1, vc_output2])
            with gr.Group():
                gr.Markdown(value="""
                    批量转换,输入待转换音频文件夹,或上传多个音频文件,在指定文件夹(默认opt)下输出转换的音频。
                    """)
                with gr.Row():
                    with gr.Column():
                        vc_transform1 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=0)
                        opt_input = gr.Textbox(label="指定输出文件夹",value="opt")
                        f0method1=gr.Radio(label="选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比", choices=["pm","harvest"],value="pm", interactive=True)
                    with gr.Column():
                        file_index2 = gr.Textbox(label="特征检索库文件路径",value="E:\codes\py39\\vits_vc_gpu_train\logs\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", interactive=True)
                        file_big_npy2 = gr.Textbox(label="特征文件路径",value="E:\codes\py39\\vits_vc_gpu_train\logs\mi-test-1key\\total_fea.npy", interactive=True)
                        index_rate2 =  gr.Slider(minimum=0, maximum=1,label='检索特征占比', value=1,interactive=True)
                    with gr.Column():
                        dir_input = gr.Textbox(label="输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)",value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs")
                        inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹")
                    but1=gr.Button("转换", variant="primary")
                    vc_output3 = gr.Textbox(label="输出信息")
                    but1.click(vc_multi, [spk_item, dir_input,opt_input,inputs, vc_transform1,f0method1,file_index2,file_big_npy2,index_rate2], [vc_output3])
        with gr.TabItem("伴奏人声分离"):
            with gr.Group():
                gr.Markdown(value="""
                    人声伴奏分离批量处理,使用UVR5模型。<br>
                    不带和声用HP2,带和声且提取的人声不需要和声用HP5<br>
                    合格的文件夹路径格式举例:E:\codes\py39\\vits_vc_gpu\白鹭霜华测试样例(去文件管理器地址栏拷就行了)
                    """)
                with gr.Row():
                    with gr.Column():
                        dir_wav_input = gr.Textbox(label="输入待处理音频文件夹路径",value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs")
                        wav_inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹")
                    with gr.Column():
                        model_choose = gr.Dropdown(label="模型", choices=uvr5_names)
                        opt_vocal_root = gr.Textbox(label="指定输出人声文件夹",value="opt")
                        opt_ins_root = gr.Textbox(label="指定输出乐器文件夹",value="opt")
                    but2=gr.Button("转换", variant="primary")
                    vc_output4 = gr.Textbox(label="输出信息")
                    but2.click(uvr, [model_choose, dir_wav_input,opt_vocal_root,wav_inputs,opt_ins_root], [vc_output4])
        with gr.TabItem("训练"):
            gr.Markdown(value="""
                step1:填写实验配置。实验数据放在logs下,每个实验一个文件夹,需手工输入实验名路径,内含实验配置,日志,训练得到的模型文件。
                """)
            with gr.Row():
                exp_dir1 = gr.Textbox(label="输入实验名",value="xxxx")
                sr2 = gr.Radio(label="目标采样率", choices=["32k","40k","48k"],value="40k", interactive=True)
                if_f0_3 = gr.Radio(label="模型是否带音高指导(唱歌一定要,语音可以不要)", choices=["是","否"],value="是", interactive=True)
            with gr.Group():#暂时单人的,后面支持最多4人的#数据处理
                gr.Markdown(value="""
                    step2a:自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化,在实验目录下生成2个wav文件夹;暂时只支持单人训练。
                    """)
                with gr.Row():
                    trainset_dir4 = gr.Textbox(label="输入训练文件夹路径",value="E:\\xxx\\xxxxx")
                    spk_id5 = gr.Slider(minimum=0, maximum=4, step=1, label='请指定说话人id', value=0,interactive=True)
                    but1=gr.Button("处理数据", variant="primary")
                    info1=gr.Textbox(label="输出信息",value="")
                    but1.click(preprocess_dataset,[trainset_dir4,exp_dir1,sr2],[info1])
            with gr.Group():
                gr.Markdown(value="""
                    step2b:使用CPU提取音高(如果模型带音高),使用GPU提取特征(选择卡号)
                    """)
                with gr.Row():
                    with gr.Column():
                        gpus6 = gr.Textbox(label="以-分隔输入使用的卡号,例如   0-1-2   使用卡0和卡1和卡2",value=gpus,interactive=True)
                        gpu_info9 = gr.Textbox(label="显卡信息",value=gpu_info)
                    with gr.Column():
                        np7 = gr.Slider(minimum=0, maximum=ncpu, step=1, label='提取音高使用的CPU进程数', value=ncpu,interactive=True)
                        f0method8 = gr.Radio(label="选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢", choices=["pm", "harvest","dio"], value="harvest", interactive=True)
                    but2=gr.Button("特征提取", variant="primary")
                    info2=gr.Textbox(label="输出信息",value="",max_lines=8)
                    but2.click(extract_f0_feature,[gpus6,np7,f0method8,if_f0_3,exp_dir1],[info2])
            with gr.Group():
                gr.Markdown(value="""
                    step3:填写训练设置,开始训练模型和索引
                    """)
                with gr.Row():
                    save_epoch10 = gr.Slider(minimum=0, maximum=50, step=1, label='保存频率save_every_epoch', value=5,interactive=True)
                    total_epoch11 = gr.Slider(minimum=0, maximum=100, step=1, label='总训练轮数total_epoch', value=10,interactive=True)
                    batch_size12 = gr.Slider(minimum=0, maximum=32, step=1, label='batch_size', value=4,interactive=True)
                    if_save_latest13 = gr.Radio(label="是否仅保存最新的ckpt文件以节省硬盘空间", choices=["是", "否"], value="否", interactive=True)
                    if_cache_gpu17 = gr.Radio(label="是否缓存所有训练集至显存。10min以下小数据可缓存以加速训练,大数据缓存会炸显存也加不了多少速", choices=["是", "否"], value="否", interactive=True)
                with gr.Row():
                    pretrained_G14 = gr.Textbox(label="加载预训练底模G路径", value="pretrained/f0G40k.pth",interactive=True)
                    pretrained_D15 = gr.Textbox(label="加载预训练底模D路径", value="pretrained/f0D40k.pth",interactive=True)
                    sr2.change(change_sr2, [sr2,if_f0_3], [pretrained_G14,pretrained_D15])
                    if_f0_3.change(change_f0, [if_f0_3, sr2], [np7, f0method8, pretrained_G14, pretrained_D15])
                    gpus16 = gr.Textbox(label="以-分隔输入使用的卡号,例如   0-1-2   使用卡0和卡1和卡2", value=gpus,interactive=True)
                    but3 = gr.Button("训练模型", variant="primary")
                    but4 = gr.Button("训练特征索引", variant="primary")
                    but5 = gr.Button("一键训练", variant="primary")
                    info3 = gr.Textbox(label="输出信息", value="",max_lines=10)
                    but3.click(click_train,[exp_dir1,sr2,if_f0_3,spk_id5,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16,if_cache_gpu17],info3)
                    but4.click(train_index,[exp_dir1],info3)
                    but5.click(train1key,[exp_dir1,sr2,if_f0_3,trainset_dir4,spk_id5,gpus6,np7,f0method8,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16,if_cache_gpu17],info3)

        with gr.TabItem("ckpt处理"):
            with gr.Group():
                gr.Markdown(value="""模型融合,可用于测试音色融合""")
                with gr.Row():
                    ckpt_a = gr.Textbox(label="A模型路径", value="", interactive=True)
                    ckpt_b = gr.Textbox(label="B模型路径", value="", interactive=True)
                    alpha_a = gr.Slider(minimum=0, maximum=1, label='A模型权重', value=0.5, interactive=True)
                with gr.Row():
                    sr_ = gr.Radio(label="目标采样率", choices=["32k","40k","48k"],value="40k", interactive=True)
                    if_f0_ = gr.Radio(label="模型是否带音高指导", choices=["是","否"],value="是", interactive=True)
                    info__ = gr.Textbox(label="要置入的模型信息", value="", max_lines=8, interactive=True)
                    name_to_save0=gr.Textbox(label="保存的模型名不带后缀", value="", max_lines=1, interactive=True)
                with gr.Row():
                    but6 = gr.Button("融合", variant="primary")
                    info4 = gr.Textbox(label="输出信息", value="", max_lines=8)
                but6.click(merge, [ckpt_a,ckpt_b,alpha_a,sr_,if_f0_,info__,name_to_save0], info4)#def merge(path1,path2,alpha1,sr,f0,info):
            with gr.Group():
                gr.Markdown(value="修改模型信息(仅支持weights文件夹下提取的小模型文件)")
                with gr.Row():
                    ckpt_path0 = gr.Textbox(label="模型路径", value="", interactive=True)
                    info_=gr.Textbox(label="要改的模型信息", value="", max_lines=8, interactive=True)
                    name_to_save1=gr.Textbox(label="保存的文件名,默认空为和源文件同名", value="", max_lines=8, interactive=True)
                with gr.Row():
                    but7 = gr.Button("修改", variant="primary")
                    info5 = gr.Textbox(label="输出信息", value="", max_lines=8)
                but7.click(change_info, [ckpt_path0,info_,name_to_save1], info5)
            with gr.Group():
                gr.Markdown(value="查看模型信息(仅支持weights文件夹下提取的小模型文件)")
                with gr.Row():
                    ckpt_path1 = gr.Textbox(label="模型路径", value="", interactive=True)
                    but8 = gr.Button("查看", variant="primary")
                    info6 = gr.Textbox(label="输出信息", value="", max_lines=8)
                but8.click(show_info, [ckpt_path1], info6)
            with gr.Group():
                gr.Markdown(value="模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况")
                with gr.Row():
                    ckpt_path2 = gr.Textbox(label="模型路径", value="E:\codes\py39\logs\mi-test_f0_48k\\G_23333.pth", interactive=True)
                    save_name = gr.Textbox(label="保存名", value="", interactive=True)
                    sr__ = gr.Radio(label="目标采样率", choices=["32k","40k","48k"],value="40k", interactive=True)
                    if_f0__ = gr.Radio(label="模型是否带音高指导,1是0否", choices=["1","0"],value="1", interactive=True)
                    info___ = gr.Textbox(label="要置入的模型信息", value="", max_lines=8, interactive=True)
                    but9 = gr.Button("提取", variant="primary")
                    info7 = gr.Textbox(label="输出信息", value="", max_lines=8)
                    ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
                but9.click(extract_small_model, [ckpt_path2,save_name,sr__,if_f0__,info___], info7)

        with gr.TabItem("招募音高曲线前端编辑器"):
            gr.Markdown(value="""加开发群联系我647947694""")
        with gr.TabItem("招募实时变声插件开发"):
            gr.Markdown(value="""加开发群联系我647947694""")
        with gr.TabItem("点击查看交流、问题反馈群号"):
            gr.Markdown(value="""259421308""")

    # app.launch(server_name="0.0.0.0",server_port=7860)
    app.queue(concurrency_count=511, max_size=1022).launch(server_name="127.0.0.1",inbrowser=True,server_port=7865,quiet=True,share=True)