File size: 15,411 Bytes
6a12eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bdafbb
 
 
6a12eae
 
 
6bdafbb
 
6a12eae
 
 
6bdafbb
6a12eae
 
 
6bdafbb
6a12eae
 
 
6bdafbb
6a12eae
 
 
 
 
6bdafbb
6a12eae
 
6bdafbb
6a12eae
 
 
 
 
6bdafbb
 
6a12eae
 
 
 
 
 
6bdafbb
6a12eae
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc3dbf7ec20>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc3dbf7ecb0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc3dbf7ed40>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc3dbf7edd0>",
        "_build": "<function ActorCriticPolicy._build at 0x7fc3dbf7ee60>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fc3dbf7eef0>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc3dbf7ef80>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fc3dbf81050>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc3dbf810e0>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc3dbf81170>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc3dbf81200>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7fc3dbfcba80>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 32,
    "num_timesteps": 1507328,
    "_total_timesteps": 1500000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1651938265.6724284,
    "learning_rate": 0.0001,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAFoEO75NIFM+VW/JPbHpf77jVIW8wi54vQAAAAAAAAAAZkIAvY/uY7p7Gt26TeqUtqvwmDuiJf05AACAPwAAgD9mJo05XPNjuj6R2Tsu0AU4EUFfOlNUvjYAAIA/AACAP2YukTz6owA+Hretu10JgL5FpA09ej0zvQAAAAAAAAAA4+2MPnw6wD6Cztm9po03vhramb2WZZ87AAAAAAAAAABm/tK8B4I4Pyqxt7zyrbi+Qd2pvMvzrL0AAAAAAAAAAFoh3z1c90S661P3urZf2TcwmLe793SOOQAAgD8AAIA/zaCOvKvvuT+dxty+F83YPsjGLjyjbNI8AAAAAAAAAADTPCm+Uu2fPzbxDL/Vgre+AY6KvudRwb4AAAAAAAAAAHOdxj3D9VG6ZoicOwK6yTa2sv+6j9yyugAAgD8AAIA/GnCJPXswoLomwKU7BN5DNgfjAbu+M7y6AACAPwAAgD8QAWG+abUtvAemnrt82nm5GieVPf0TvToAAIA/AACAPzMvQLz20HS6hRJbO/s6LjcuGvA649p5ugAAgD8AAIA/JkxnPlvr0bzmbiO73DuTOW4XPL4A1E86AACAPwAAgD+NASa+pCdGPN0I2jyWx0C7FNnQvcpXOTwAAIA/AACAP/qfAr6u56g5MjshO6TroLgd9TO83WSBOQAAgD8AAIA/pknPveHAkLor6a08Mn4GPcrJqrtVwuc9AACAPwAAgD+Njr29j4YjuipgMLy35i84aPU0OqeNoLcAAIA/AACAP6CGFr7XrUI8M+JOPXSFBbz98M+9GSMAPQAAgD8AAIA/msVavVwfGrpGpZo5fn67NAHj67oSYLK4AACAPwAAgD8DJIk+97ptvcAM3zuOY6K6gv3Lvg2YZLsAAIA/AACAP41vwL7fNow8y0BuOxyhIzfJPIo8M0mjugAAgD8AAIA/PWuiPntZ6byE7SM8+qiUug3KMb5E3ss0AACAPwAAgD+TNiy+KWZzO/BIuTyfVwU88J0LvZqI+7wAAIA/AACAP43xmb1IRau6NrK2uy1ul7hr2IA74GRiOgAAgD8AAIA/mhfDPSkML7rGWU07azEuN7NIA7xiEfC5AACAPwAAgD9m8f68uMagufYKfDtSlis3BOgFuvnVJzYAAIA/AACAP+ba9z0a/Zk/DTeMPh086b4VGx095qkQvQAAAAAAAAAABvt0Puxi0rusASw7bFituSvhQ72U7UG6AACAPwAAgD+aAqs8/r+JPVtKHT2ZDDW+z2tovQdoKzwAAAAAAAAAABqhAD24Lva5hYLOOqk48zaMBRq7OL/wNQAAgD8AAIA/ch2ovoSJI7036Sa6MCG6uCEVVD6nB0c5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.004885333333333408,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+3jou9teYECUhpRSlIwBbJRN6AOMAXSUR0CgszwJw84hdX2UKGgGaAloD0MIba0vEtp4X0CUhpRSlGgVTegDaBZHQKC4NDUmUnp1fZQoaAZoCWgPQwjFymjk85RjQJSGlFKUaBVN6ANoFkdAoLwJ/ustCnV9lChoBmgJaA9DCEKXcOgtZGVAlIaUUpRoFU3oA2gWR0CgvRl36hxpdX2UKGgGaAloD0MIDOcaZmhMXECUhpRSlGgVTegDaBZHQKC+ahWYF7l1fZQoaAZoCWgPQwiwql5+pzlcQJSGlFKUaBVN6ANoFkdAoMHCW5YozHV9lChoBmgJaA9DCO3ShsPS32JAlIaUUpRoFU3oA2gWR0CgwqygXdj5dX2UKGgGaAloD0MIC5xsA3ePVkCUhpRSlGgVTegDaBZHQKDEQa/ATIx1fZQoaAZoCWgPQwgah/pd2FxdQJSGlFKUaBVN6ANoFkdAoMRm85CF9XV9lChoBmgJaA9DCJpgONcw5V9AlIaUUpRoFU3oA2gWR0CgxUw22oegdX2UKGgGaAloD0MIvMywUdYxUkCUhpRSlGgVTegDaBZHQKDGTrE9+w11fZQoaAZoCWgPQwg9mBQfn6pWQJSGlFKUaBVN6ANoFkdAoMfFo+Ofd3V9lChoBmgJaA9DCE1Ngjek311AlIaUUpRoFU3oA2gWR0CgyJ5uZThpdX2UKGgGaAloD0MIZ3xfXKrwX0CUhpRSlGgVTegDaBZHQKDJIU7CBPN1fZQoaAZoCWgPQwjIQQkzbS1dQJSGlFKUaBVN6ANoFkdAoM+yPIXCTHV9lChoBmgJaA9DCBubHam+c+2/lIaUUpRoFUu9aBZHQKDS2y44Ia91fZQoaAZoCWgPQwjFVzuK84hhQJSGlFKUaBVN6ANoFkdAoNQ+bb1yvXV9lChoBmgJaA9DCNobfGGy52FAlIaUUpRoFU3oA2gWR0Cg1qJcHGCJdX2UKGgGaAloD0MIKENVTKVtWUCUhpRSlGgVTegDaBZHQKDYKPgeii91fZQoaAZoCWgPQwg5s12hj1diQJSGlFKUaBVN6ANoFkdAoNpf7vXsgXV9lChoBmgJaA9DCMeb/BYdgWVAlIaUUpRoFU3oA2gWR0Cg3Z67NB4VdX2UKGgGaAloD0MIM4l6wadsV0CUhpRSlGgVTegDaBZHQKDd1pXZGrl1fZQoaAZoCWgPQwjK+ziaIwRfQJSGlFKUaBVN6ANoFkdAoOC0AeaKDXV9lChoBmgJaA9DCI4ev7dpFGFAlIaUUpRoFU3oA2gWR0Cg4h86eXiSdX2UKGgGaAloD0MIG2SSkbPWYkCUhpRSlGgVTegDaBZHQKDjNYI0IkZ1fZQoaAZoCWgPQwh3ZoLh3MJgQJSGlFKUaBVN6ANoFkdAoOXau4gA63V9lChoBmgJaA9DCBr35jdMrVpAlIaUUpRoFU3oA2gWR0Cg6q9epn6EdX2UKGgGaAloD0MIWz/9Z82fW0CUhpRSlGgVTegDaBZHQKE4J0Bfa6B1fZQoaAZoCWgPQwheRxyygTFoQJSGlFKUaBVN6ANoFkdAoTmEcp9ZzXV9lChoBmgJaA9DCEUpIVjVD2NAlIaUUpRoFU3oA2gWR0ChOxmcvugIdX2UKGgGaAloD0MIY7SOqiZMYkCUhpRSlGgVTegDaBZHQKE8jVOKwZB1fZQoaAZoCWgPQwguyJbl6744QJSGlFKUaBVL2GgWR0ChPg46nzg/dX2UKGgGaAloD0MIXTelvNb9YkCUhpRSlGgVTegDaBZHQKE+MfOD8Lt1fZQoaAZoCWgPQwitpuuJLsRjQJSGlFKUaBVN6ANoFkdAoUZPGOuJUHV9lChoBmgJaA9DCEa0HVN32mJAlIaUUpRoFU3oA2gWR0ChRuz9KmKqdX2UKGgGaAloD0MIvYxiuaXjaUCUhpRSlGgVTXYDaBZHQKFG8X40uUV1fZQoaAZoCWgPQwgBhuXPt1tAQJSGlFKUaBVLyGgWR0ChSwdpqREGdX2UKGgGaAloD0MI1elA1tNbaECUhpRSlGgVTegDaBZHQKFLjPOY6XB1fZQoaAZoCWgPQwgcfGEyVVBaQJSGlFKUaBVN6ANoFkdAoVAjqlgtvnV9lChoBmgJaA9DCBqGj4gpoVtAlIaUUpRoFU3oA2gWR0ChUXDxkNF0dX2UKGgGaAloD0MIrB4wDxl5Y0CUhpRSlGgVTegDaBZHQKFUrX2/SIB1fZQoaAZoCWgPQwiHo6t0d3ZfQJSGlFKUaBVN6ANoFkdAoVWPH5rP+nV9lChoBmgJaA9DCKbvNQTH+V9AlIaUUpRoFU3oA2gWR0ChVxnavicYdX2UKGgGaAloD0MIBHY1ecoUXkCUhpRSlGgVTegDaBZHQKFXQjynUDx1fZQoaAZoCWgPQwhCtFa0uTtiQJSGlFKUaBVN6ANoFkdAoVgdPva11HV9lChoBmgJaA9DCFvri4S2WlNAlIaUUpRoFU3oA2gWR0ChWpnMEA5rdX2UKGgGaAloD0MInKiluRWmW0CUhpRSlGgVTegDaBZHQKFbffdAPd51fZQoaAZoCWgPQwhselBQirNfQJSGlFKUaBVN6ANoFkdAoVwFQj2SMnV9lChoBmgJaA9DCPyJyoY1ATpAlIaUUpRoFUuhaBZHQKFfgZflZHN1fZQoaAZoCWgPQwjJkjmWd8NiQJSGlFKUaBVN6ANoFkdAoWKwH5aePXV9lChoBmgJaA9DCEcf8wGBmWJAlIaUUpRoFU3oA2gWR0ChZeXsolUqdX2UKGgGaAloD0MIM6SK4lXxZECUhpRSlGgVTegDaBZHQKFnNs7dSEV1fZQoaAZoCWgPQwguOIO/X+hFQJSGlFKUaBVLw2gWR0ChaV+54GD+dX2UKGgGaAloD0MIVKcDWU+VUkCUhpRSlGgVTegDaBZHQKFpgOn2qT91fZQoaAZoCWgPQwgeiZenc+xeQJSGlFKUaBVN6ANoFkdAoWrob4rSVnV9lChoBmgJaA9DCCAIkKFjx15AlIaUUpRoFU3oA2gWR0ChbQUeMhoudX2UKGgGaAloD0MInDV4X5WtZkCUhpRSlGgVTegDaBZHQKFwHdoFmnR1fZQoaAZoCWgPQwjMC7CPztthQJSGlFKUaBVN6ANoFkdAoXBVqk/KQ3V9lChoBmgJaA9DCCO/fogN0mFAlIaUUpRoFU3oA2gWR0Chcw0nG828dX2UKGgGaAloD0MIQPz89+A1XUCUhpRSlGgVTegDaBZHQKF0ZHeaa1F1fZQoaAZoCWgPQwiuEiwO5zBmQJSGlFKUaBVN6ANoFkdAoXf8Vzp5eXV9lChoBmgJaA9DCBCSBUzgPWJAlIaUUpRoFU3oA2gWR0ChfK3F1jiGdX2UKGgGaAloD0MIfAvrxjsxYUCUhpRSlGgVTegDaBZHQKF/S8M/hVF1fZQoaAZoCWgPQwhJvhJIic0xwJSGlFKUaBVL1mgWR0Chf7z6i0v5dX2UKGgGaAloD0MIaHdIMcDjYkCUhpRSlGgVTegDaBZHQKGAnccENfB1fZQoaAZoCWgPQwgPKJtyhcVjQJSGlFKUaBVN6ANoFkdAoYIpoysS03V9lChoBmgJaA9DCBsqxvkbAWBAlIaUUpRoFU3oA2gWR0ChhUJO32EkdX2UKGgGaAloD0MICJEMObYqZECUhpRSlGgVTegDaBZHQKGFar3j+711fZQoaAZoCWgPQwjxnZj1Yt1aQJSGlFKUaBVN6ANoFkdAoY2uHUMG5nV9lChoBmgJaA9DCJ9b6EqEimJAlIaUUpRoFU3oA2gWR0ChjlH93r2QdX2UKGgGaAloD0MIzm+YaBADY0CUhpRSlGgVTegDaBZHQKGOV4keIVN1fZQoaAZoCWgPQwiU2/Y96i/sP5SGlFKUaBVL9mgWR0ChkjUQ9RrKdX2UKGgGaAloD0MIwRpn0xEuVkCUhpRSlGgVTegDaBZHQKGSw1dgOSZ1fZQoaAZoCWgPQwgIWoEhq0teQJSGlFKUaBVN6ANoFkdAoZNQlByCF3V9lChoBmgJaA9DCFRTknU41WBAlIaUUpRoFU3oA2gWR0ChmB3JYDDCdX2UKGgGaAloD0MI1xaelwo0YECUhpRSlGgVTegDaBZHQKGZhOdGy5Z1fZQoaAZoCWgPQwiE1y5tOMlZQJSGlFKUaBVN6ANoFkdAoZ3GD6Fds3V9lChoBmgJaA9DCIYhcvp6S1lAlIaUUpRoFU3oA2gWR0Chn2tihFmWdX2UKGgGaAloD0MIlphnJa2iXECUhpRSlGgVTegDaBZHQKGfk0rsjVx1fZQoaAZoCWgPQwijrrX3qdRhQJSGlFKUaBVN6ANoFkdAoaB/smfGuXV9lChoBmgJaA9DCL9IaMu5lEVAlIaUUpRoFUvEaBZHQKGhAxwhnrZ1fZQoaAZoCWgPQwjbiZKQSKRgQJSGlFKUaBVN6ANoFkdAoaMuCPIXCXV9lChoBmgJaA9DCIwtBDkoLlZAlIaUUpRoFU3oA2gWR0ChpBPUaybAdX2UKGgGaAloD0MIBYnt7gE5ZUCUhpRSlGgVTegDaBZHQKGoZ9H+ZPV1fZQoaAZoCWgPQwiT4A1p1PJhQJSGlFKUaBVN6ANoFkdAoavli6QNkXV9lChoBmgJaA9DCFyRmKAGImNAlIaUUpRoFU3oA2gWR0Chr0LU1AJLdX2UKGgGaAloD0MICcGqevnsZECUhpRSlGgVTegDaBZHQKGwpHNorWl1fZQoaAZoCWgPQwg6rkZ2JT1jQJSGlFKUaBVN6ANoFkdAobLb9Q40dnV9lChoBmgJaA9DCH+FzJXByWBAlIaUUpRoFU3oA2gWR0Chsv3LeQ+2dX2UKGgGaAloD0MI8iiV8ARfZECUhpRSlGgVTegDaBZHQKG0Xf9gndB1fZQoaAZoCWgPQwic/BadLCBgQJSGlFKUaBVN6ANoFkdAobZwC6pYLnV9lChoBmgJaA9DCF0WE5uPEWJAlIaUUpRoFU3oA2gWR0ChuXc580DVdX2UKGgGaAloD0MIFqQZi6Y5YECUhpRSlGgVTegDaBZHQKG8WhEBsAN1fZQoaAZoCWgPQwgUXRd+8JdlQJSGlFKUaBVN6ANoFkdAob22a4MF2XV9lChoBmgJaA9DCEz+J3/3OjZAlIaUUpRoFUvJaBZHQKHBH+6RQrN1fZQoaAZoCWgPQwijA5Kw7/xkQJSGlFKUaBVN6ANoFkdAocFaxu89OnV9lChoBmgJaA9DCGb35GGhPGFAlIaUUpRoFU3oA2gWR0Chxh56+nIidX2UKGgGaAloD0MIGF5J8txUYkCUhpRSlGgVTegDaBZHQKHIwcghbGF1fZQoaAZoCWgPQwhVpMLYQpBYQJSGlFKUaBVN6ANoFkdAocoWCbtqpXV9lChoBmgJaA9DCDDzHfzEelpAlIaUUpRoFU3oA2gWR0Chy6f0ulGgdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 230,
    "n_steps": 2048,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 128,
    "n_epochs": 10,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}