rhaymison's picture
Update README.md
bb3713a verified
|
raw
history blame
4.8 kB
---
library_name: transformers
tags:
- portugues
- portuguese
- QA
- instruct
license: apache-2.0
datasets:
- rhaymison/superset
language:
- pt
pipeline_tag: text-generation
base_model: meta-llama/Meta-Llama-3-8B-Instruct
---
# Mistral-portuguese-luana-7b-chat
<p align="center">
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/llama3-luana.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>
This model was trained with a superset of 290,000 chat in Portuguese.
The model comes to help fill the gap in models in Portuguese. Tuned from the Mistral 7b in Portuguese, the model was adjusted mainly for chat.
# How to use
### FULL MODEL : A100
### HALF MODEL: L4
### 8bit or 4bit : T4 or V100
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches.
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response.
Important points like these help models (even smaller models like 7b) to perform much better.
```python
!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/Llama3-portuguese-luana-8b-instruct", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Llama3-portuguese-luana-8b-instruct")
model.eval()
```
You can use with Pipeline.
```python
from transformers import pipeline
stop_token = "<|eot_id|>"
stop_token_id = tokenizer.encode(stop_token)[0]
pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
do_sample=True,
max_new_tokens=256,
num_beams=2,
temperature=0.3,
top_k=50,
top_p=0.95,
early_stopping=True,
eos_token_id=stop_token_id,
pad_token_id=tokenizer.eos_token_id,
)
def format_dataset(question:str):
system_prompt = "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
return f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{ system_prompt }<|eot_id|><|start_header_id|>user<|end_header_id|>
{ question }<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
prompt = format_dataset("Me explique quem eram os Romanos")
result = pipe(prompt)
result[0]["generated_text"].split("assistant<|end_header_id|>")[1]
#Os romanos eram um povo antigo que habitava a península italiana, particularmente na região que hoje é conhecida como Itália. Eles estabeleceram o Império Romano,
#que se tornou uma das maiores e mais poderosas civilizações da história. Os romanos eram conhecidos por suas conquistas militares, sua arquitetura e engenharia
#impressionantes e sua influência duradoura na cultura ocidental.
#Os romanos eram uma sociedade complexa que consistia em várias classes sociais, incluindo senadores, cavaleiros, plebeus e escravos.
#Eles tinham um sistema de governo baseado em uma república, onde o poder era dividido entre o Senado e a Assembléia do Povo.
#Os romanos eram conhecidos por suas conquistas militares, que os levaram a expandir seu império por toda a Europa, Ásia e África.
#Eles estabeleceram uma rede de estradas, pontes e outras estruturas que facilitaram a comunicação e o comércio.
```
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization.
For the complete model in colab you will need the A100.
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.
# 4bits example
```python
from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
device_map={"": 0}
)
```
### Comments
Any idea, help or report will always be welcome.
email: rhaymisoncristian@gmail.com
<div style="display:flex; flex-direction:row; justify-content:left">
<a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank">
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white">
</a>
<a href="https://github.com/rhaymisonbetini" target="_blank">
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white">
</a>