|
--- |
|
library_name: transformers |
|
tags: |
|
- portugues |
|
- portuguese |
|
- QA |
|
- instruct |
|
license: apache-2.0 |
|
datasets: |
|
- rhaymison/superset |
|
language: |
|
- pt |
|
pipeline_tag: text-generation |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
--- |
|
|
|
# Mistral-portuguese-luana-7b-chat |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/llama3-luana.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
</p> |
|
|
|
|
|
This model was trained with a superset of 290,000 chat in Portuguese. |
|
The model comes to help fill the gap in models in Portuguese. Tuned from the Mistral 7b in Portuguese, the model was adjusted mainly for chat. |
|
|
|
# How to use |
|
|
|
### FULL MODEL : A100 |
|
### HALF MODEL: L4 |
|
### 8bit or 4bit : T4 or V100 |
|
|
|
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. |
|
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. |
|
Important points like these help models (even smaller models like 7b) to perform much better. |
|
|
|
```python |
|
!pip install -q -U transformers |
|
!pip install -q -U accelerate |
|
!pip install -q -U bitsandbytes |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
model = AutoModelForCausalLM.from_pretrained("rhaymison/Llama3-portuguese-luana-8b-instruct", device_map= {"": 0}) |
|
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Llama3-portuguese-luana-8b-instruct") |
|
model.eval() |
|
|
|
``` |
|
|
|
You can use with Pipeline. |
|
```python |
|
|
|
from transformers import pipeline |
|
stop_token = "<|eot_id|>" |
|
stop_token_id = tokenizer.encode(stop_token)[0] |
|
|
|
pipe = pipeline("text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
do_sample=True, |
|
max_new_tokens=256, |
|
num_beams=2, |
|
temperature=0.3, |
|
top_k=50, |
|
top_p=0.95, |
|
early_stopping=True, |
|
eos_token_id=stop_token_id, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
|
|
def format_dataset(question:str): |
|
system_prompt = "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido." |
|
|
|
return f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> |
|
{ system_prompt }<|eot_id|><|start_header_id|>user<|end_header_id|> |
|
{ question }<|eot_id|><|start_header_id|>assistant<|end_header_id|>""" |
|
|
|
prompt = format_dataset("Me explique quem eram os Romanos") |
|
result = pipe(prompt) |
|
result[0]["generated_text"].split("assistant<|end_header_id|>")[1] |
|
|
|
|
|
|
|
#Os romanos eram um povo antigo que habitava a península italiana, particularmente na região que hoje é conhecida como Itália. Eles estabeleceram o Império Romano, |
|
#que se tornou uma das maiores e mais poderosas civilizações da história. Os romanos eram conhecidos por suas conquistas militares, sua arquitetura e engenharia |
|
#impressionantes e sua influência duradoura na cultura ocidental. |
|
#Os romanos eram uma sociedade complexa que consistia em várias classes sociais, incluindo senadores, cavaleiros, plebeus e escravos. |
|
#Eles tinham um sistema de governo baseado em uma república, onde o poder era dividido entre o Senado e a Assembléia do Povo. |
|
#Os romanos eram conhecidos por suas conquistas militares, que os levaram a expandir seu império por toda a Europa, Ásia e África. |
|
#Eles estabeleceram uma rede de estradas, pontes e outras estruturas que facilitaram a comunicação e o comércio. |
|
|
|
``` |
|
|
|
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. |
|
For the complete model in colab you will need the A100. |
|
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem. |
|
|
|
# 4bits example |
|
|
|
```python |
|
from transformers import BitsAndBytesConfig |
|
import torch |
|
nb_4bit_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
quantization_config=bnb_config, |
|
device_map={"": 0} |
|
) |
|
|
|
``` |
|
|
|
|
|
### Comments |
|
|
|
Any idea, help or report will always be welcome. |
|
|
|
email: rhaymisoncristian@gmail.com |
|
|
|
<div style="display:flex; flex-direction:row; justify-content:left"> |
|
<a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank"> |
|
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white"> |
|
</a> |
|
<a href="https://github.com/rhaymisonbetini" target="_blank"> |
|
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> |
|
</a> |