|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model-index: |
|
- name: Mistral-7B-v0.1_caselaw |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7B-v0.1_caselaw |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1640 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 2.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.2324 | 0.07 | 50 | 1.2373 | |
|
| 1.2114 | 0.13 | 100 | 1.2199 | |
|
| 1.1831 | 0.2 | 150 | 1.2111 | |
|
| 1.2027 | 0.26 | 200 | 1.2048 | |
|
| 1.1827 | 0.33 | 250 | 1.2001 | |
|
| 1.1696 | 0.39 | 300 | 1.1973 | |
|
| 1.2186 | 0.46 | 350 | 1.1938 | |
|
| 1.1795 | 0.52 | 400 | 1.1919 | |
|
| 1.2167 | 0.59 | 450 | 1.1884 | |
|
| 1.1992 | 0.66 | 500 | 1.1840 | |
|
| 1.2032 | 0.72 | 550 | 1.1824 | |
|
| 1.1841 | 0.79 | 600 | 1.1798 | |
|
| 1.166 | 0.85 | 650 | 1.1789 | |
|
| 1.1641 | 0.92 | 700 | 1.1761 | |
|
| 1.1859 | 0.98 | 750 | 1.1752 | |
|
| 1.132 | 1.05 | 800 | 1.1736 | |
|
| 1.1461 | 1.12 | 850 | 1.1724 | |
|
| 1.0965 | 1.18 | 900 | 1.1726 | |
|
| 1.1064 | 1.25 | 950 | 1.1724 | |
|
| 1.123 | 1.31 | 1000 | 1.1729 | |
|
| 1.1079 | 1.38 | 1050 | 1.1695 | |
|
| 1.12 | 1.44 | 1100 | 1.1707 | |
|
| 1.1288 | 1.51 | 1150 | 1.1693 | |
|
| 1.133 | 1.57 | 1200 | 1.1676 | |
|
| 1.1647 | 1.64 | 1250 | 1.1693 | |
|
| 1.1269 | 1.71 | 1300 | 1.1658 | |
|
| 1.1332 | 1.77 | 1350 | 1.1657 | |
|
| 1.1276 | 1.84 | 1400 | 1.1681 | |
|
| 1.1361 | 1.9 | 1450 | 1.1633 | |
|
| 1.1205 | 1.97 | 1500 | 1.1640 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.1 |