Commit
·
032c2ca
verified
·
0
Parent(s):
Duplicate from OEvortex/HelpingAI-180B-base
Browse filesCo-authored-by: HelpingAI <Abhaykoul@users.noreply.huggingface.co>
- .gitattributes +37 -0
- README.md +26 -0
- config.json +28 -0
- configuration_HelpingAI.py +60 -0
- generation_config.json +6 -0
- modeling_HelpingAI.py +670 -0
- pytorch_model-00001-of-00036.bin +3 -0
- pytorch_model-00002-of-00036.bin +3 -0
- pytorch_model-00003-of-00036.bin +3 -0
- pytorch_model-00004-of-00036.bin +3 -0
- pytorch_model-00005-of-00036.bin +3 -0
- pytorch_model-00006-of-00036.bin +3 -0
- pytorch_model-00007-of-00036.bin +3 -0
- pytorch_model-00008-of-00036.bin +3 -0
- pytorch_model-00009-of-00036.bin +3 -0
- pytorch_model-00010-of-00036.bin +3 -0
- pytorch_model-00011-of-00036.bin +3 -0
- pytorch_model-00012-of-00036.bin +3 -0
- pytorch_model-00013-of-00036.bin +3 -0
- pytorch_model-00014-of-00036.bin +3 -0
- pytorch_model-00015-of-00036.bin +3 -0
- pytorch_model-00016-of-00036.bin +3 -0
- pytorch_model-00017-of-00036.bin +3 -0
- pytorch_model-00018-of-00036.bin +3 -0
- pytorch_model-00019-of-00036.bin +3 -0
- pytorch_model-00020-of-00036.bin +3 -0
- pytorch_model-00021-of-00036.bin +3 -0
- pytorch_model-00022-of-00036.bin +3 -0
- pytorch_model-00023-of-00036.bin +3 -0
- pytorch_model-00024-of-00036.bin +3 -0
- pytorch_model-00025-of-00036.bin +3 -0
- pytorch_model-00026-of-00036.bin +3 -0
- pytorch_model-00027-of-00036.bin +3 -0
- pytorch_model-00028-of-00036.bin +3 -0
- pytorch_model-00029-of-00036.bin +3 -0
- pytorch_model-00030-of-00036.bin +3 -0
- pytorch_model-00031-of-00036.bin +3 -0
- pytorch_model-00032-of-00036.bin +3 -0
- pytorch_model-00033-of-00036.bin +3 -0
- pytorch_model-00034-of-00036.bin +3 -0
- pytorch_model-00035-of-00036.bin +3 -0
- pytorch_model-00036-of-00036.bin +3 -0
- pytorch_model.bin.index.json +853 -0
- special_tokens_map.json +30 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +49 -0
.gitattributes
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer[[:space:]](1).json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- gemma
|
8 |
+
---
|
9 |
+
|
10 |
+
# HelpingAI-180B-base
|
11 |
+
|
12 |
+
## Description
|
13 |
+
The HelpingAI-180B-base model is a large-scale artificial intelligence model developed to assist in various natural language processing tasks. Trained on a diverse range of data sources, this model is designed to generate text, facilitate language understanding, and support various downstream tasks.
|
14 |
+
|
15 |
+
## Model Information
|
16 |
+
- **Model size**: 180 billion parameters
|
17 |
+
- **Training data**: Diverse datasets covering a wide range of topics and domains.
|
18 |
+
- **Training objective**: Language modeling with an emphasis on understanding and generating human-like text.
|
19 |
+
- **Tokenizer**: Gemma tokenizer
|
20 |
+
## Intended Use
|
21 |
+
The HelpingAI-180B-base model is intended for researchers, developers, and practitioners in the field of natural language processing (NLP). It can be used for a variety of tasks, including but not limited to:
|
22 |
+
- Text generation
|
23 |
+
- Language understanding
|
24 |
+
- Text summarization
|
25 |
+
- Dialogue generation
|
26 |
+
This model for research
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"HelpingAIForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_HelpingAI.HelpingAIConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_HelpingAI.HelpingAIForCausalLM"
|
8 |
+
},
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"attention_softmax_in_fp32": true,
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"hidden_dropout": 0.0,
|
14 |
+
"hidden_size": 14336,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"layer_norm_epsilon": 1e-05,
|
17 |
+
"masked_softmax_fusion": true,
|
18 |
+
"model_type": "HelpingAI",
|
19 |
+
"n_head": 112,
|
20 |
+
"n_layer": 70,
|
21 |
+
"pad_token_id": 3,
|
22 |
+
"pretraining_tp": 4,
|
23 |
+
"slow_but_exact": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.34.0",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250880
|
28 |
+
}
|
configuration_HelpingAI.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" HelpingAI model configuration"""
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
class HelpingAIConfig(PretrainedConfig):
|
10 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
11 |
+
model_type = "HelpingAI"
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
vocab_size=50304,
|
15 |
+
hidden_size=2560,
|
16 |
+
intermediate_size=6912,
|
17 |
+
num_hidden_layers=32,
|
18 |
+
num_attention_heads=32,
|
19 |
+
num_key_value_heads=32,
|
20 |
+
head_dim=256,
|
21 |
+
hidden_act="silu",
|
22 |
+
max_position_embeddings=4096,
|
23 |
+
initializer_range=0.02,
|
24 |
+
rms_norm_eps=1e-6,
|
25 |
+
use_cache=True,
|
26 |
+
hidden_activation=None,
|
27 |
+
rope_theta=10000,
|
28 |
+
rope_pct=0.25,
|
29 |
+
attention_bias=False,
|
30 |
+
attention_dropout=0.0,
|
31 |
+
num_experts_per_tok=2,
|
32 |
+
num_local_experts=8,
|
33 |
+
router_aux_loss_coef=0.02,
|
34 |
+
output_router_logits=False,
|
35 |
+
norm_eps=1.0e-5,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
self.vocab_size = vocab_size
|
39 |
+
self.max_position_embeddings = max_position_embeddings
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.intermediate_size = intermediate_size
|
42 |
+
self.num_hidden_layers = num_hidden_layers
|
43 |
+
self.num_attention_heads = num_attention_heads
|
44 |
+
self.head_dim = head_dim
|
45 |
+
self.hidden_act = hidden_act
|
46 |
+
self.hidden_activation = hidden_activation
|
47 |
+
self.num_key_value_heads = num_key_value_heads
|
48 |
+
self.initializer_range = initializer_range
|
49 |
+
self.rms_norm_eps = rms_norm_eps
|
50 |
+
self.use_cache = use_cache
|
51 |
+
self.rope_theta = rope_theta
|
52 |
+
self.attention_bias = attention_bias
|
53 |
+
self.attention_dropout = attention_dropout
|
54 |
+
self.num_experts_per_tok = num_experts_per_tok
|
55 |
+
self.num_local_experts = num_local_experts
|
56 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
57 |
+
self.output_router_logits = output_router_logits
|
58 |
+
self.rope_pct = rope_pct
|
59 |
+
self.norm_eps = norm_eps
|
60 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"do_sample": true,
|
5 |
+
"transformers_version": "4.40.0.dev0"
|
6 |
+
}
|
modeling_HelpingAI.py
ADDED
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" HelpingAI model . """
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from transformers import AutoModel, AutoModelForCausalLM
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
from transformers.modeling_outputs import (
|
11 |
+
BaseModelOutputWithPast,
|
12 |
+
CausalLMOutputWithPast,
|
13 |
+
)
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from .configuration_HelpingAI import HelpingAIConfig
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
23 |
+
def _make_causal_mask(
|
24 |
+
input_ids_shape: torch.Size,
|
25 |
+
dtype: torch.dtype,
|
26 |
+
device: torch.device,
|
27 |
+
past_key_values_length: int = 0,
|
28 |
+
):
|
29 |
+
"""Make causal mask used for bi-directional self-attention."""
|
30 |
+
batch_size, tgt_len = input_ids_shape
|
31 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
|
32 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
33 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
34 |
+
mask = mask.to(dtype)
|
35 |
+
if past_key_values_length > 0:
|
36 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
37 |
+
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
|
38 |
+
|
39 |
+
|
40 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
41 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
42 |
+
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
|
43 |
+
batch_size, src_len = mask.size()
|
44 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
45 |
+
|
46 |
+
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
|
47 |
+
inverted_mask = 1.0 - expanded_mask
|
48 |
+
|
49 |
+
return inverted_mask.masked_fill(
|
50 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
class RotaryEmbedding(nn.Module):
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
dim: int,
|
58 |
+
max_position_embeddings: int,
|
59 |
+
base: int = 10_000,
|
60 |
+
device: Optional[torch.device] = None,
|
61 |
+
):
|
62 |
+
super().__init__()
|
63 |
+
|
64 |
+
self.dim = dim
|
65 |
+
self.max_position_embeddings = max_position_embeddings
|
66 |
+
self.base = base
|
67 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
68 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
69 |
+
|
70 |
+
# Build here to make `torch.jit.trace` work.
|
71 |
+
self._set_cos_sin_cache(
|
72 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
|
73 |
+
)
|
74 |
+
|
75 |
+
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
76 |
+
self.max_seq_len_cached = seq_len
|
77 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
78 |
+
|
79 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
80 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
81 |
+
freqs = torch.outer(t, self.inv_freq)
|
82 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
83 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
84 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
85 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
86 |
+
|
87 |
+
def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
|
88 |
+
# x: [batch_size, num_heads, seq_len, head_size]
|
89 |
+
if seq_len > self.max_seq_len_cached:
|
90 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
|
91 |
+
return (
|
92 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
93 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def rotate_half(x: torch.Tensor):
|
98 |
+
"""Rotates half the hidden dims of the input."""
|
99 |
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
100 |
+
return torch.cat((-x2, x1), dim=-1)
|
101 |
+
|
102 |
+
|
103 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
104 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
105 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
106 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
107 |
+
cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
108 |
+
sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
109 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
110 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
111 |
+
return q_embed, k_embed
|
112 |
+
|
113 |
+
|
114 |
+
class MLP(nn.Module):
|
115 |
+
def __init__(self, config: HelpingAIConfig):
|
116 |
+
super().__init__()
|
117 |
+
self.config = config
|
118 |
+
self.hidden_size = config.hidden_size
|
119 |
+
self.intermediate_size = config.intermediate_size
|
120 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
121 |
+
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
122 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
123 |
+
self.act_fn = nn.SiLU()
|
124 |
+
|
125 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
127 |
+
|
128 |
+
|
129 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
130 |
+
"""
|
131 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
132 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
133 |
+
"""
|
134 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
135 |
+
if n_rep == 1:
|
136 |
+
return hidden_states
|
137 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
138 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
139 |
+
|
140 |
+
|
141 |
+
class Attention(nn.Module):
|
142 |
+
def __init__(self, config: HelpingAIConfig):
|
143 |
+
super().__init__()
|
144 |
+
self.config = config
|
145 |
+
self.hidden_size = config.hidden_size
|
146 |
+
self.num_heads = config.num_attention_heads
|
147 |
+
self.head_dim = self.hidden_size // self.num_heads
|
148 |
+
self.num_key_value_heads = config.num_key_value_heads
|
149 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
150 |
+
self.max_position_embeddings = config.max_position_embeddings
|
151 |
+
|
152 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
153 |
+
raise ValueError(
|
154 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
155 |
+
f" and `num_heads`: {self.num_heads})."
|
156 |
+
)
|
157 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
158 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
159 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
160 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
161 |
+
|
162 |
+
self._init_rope()
|
163 |
+
|
164 |
+
def _init_rope(self):
|
165 |
+
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
166 |
+
self.rotary_emb = RotaryEmbedding(
|
167 |
+
self.rotary_ndims,
|
168 |
+
max_position_embeddings=self.config.max_position_embeddings,
|
169 |
+
base=self.config.rope_theta,
|
170 |
+
)
|
171 |
+
|
172 |
+
def forward(
|
173 |
+
self,
|
174 |
+
hidden_states: torch.FloatTensor,
|
175 |
+
attention_mask: torch.FloatTensor,
|
176 |
+
position_ids: torch.LongTensor,
|
177 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
178 |
+
output_attentions: Optional[bool] = False,
|
179 |
+
use_cache: Optional[bool] = False,
|
180 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
181 |
+
bsz, q_len, _ = hidden_states.size()
|
182 |
+
|
183 |
+
query_states = self.q_proj(hidden_states)
|
184 |
+
key_states = self.k_proj(hidden_states)
|
185 |
+
value_states = self.v_proj(hidden_states)
|
186 |
+
|
187 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
188 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
189 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
190 |
+
|
191 |
+
query_rot = query_states[..., : self.rotary_ndims]
|
192 |
+
query_pass = query_states[..., self.rotary_ndims :]
|
193 |
+
key_rot = key_states[..., : self.rotary_ndims]
|
194 |
+
key_pass = key_states[..., self.rotary_ndims :]
|
195 |
+
|
196 |
+
kv_seq_len = key_states.shape[-2]
|
197 |
+
if past_key_value is not None:
|
198 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
199 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
200 |
+
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
201 |
+
|
202 |
+
# [batch_size, num_heads, seq_len, head_dim]
|
203 |
+
query_states = torch.cat((query_states, query_pass), dim=-1)
|
204 |
+
key_states = torch.cat((key_states, key_pass), dim=-1)
|
205 |
+
|
206 |
+
if past_key_value is not None:
|
207 |
+
# Reuse k, v, self_attention
|
208 |
+
key_states = torch.cat((past_key_value[0], key_states), dim=2)
|
209 |
+
value_states = torch.cat((past_key_value[1], value_states), dim=2)
|
210 |
+
|
211 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
212 |
+
|
213 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
214 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
215 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
216 |
+
|
217 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
218 |
+
|
219 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
220 |
+
raise ValueError(
|
221 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
222 |
+
f" {attn_weights.size()}"
|
223 |
+
)
|
224 |
+
|
225 |
+
if attention_mask is not None:
|
226 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
227 |
+
raise ValueError(
|
228 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
229 |
+
)
|
230 |
+
attn_weights = attn_weights + attention_mask
|
231 |
+
|
232 |
+
# Upcast attention to fp32
|
233 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
234 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
235 |
+
|
236 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
237 |
+
raise ValueError(
|
238 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
239 |
+
f" {attn_output.size()}"
|
240 |
+
)
|
241 |
+
|
242 |
+
# Merge heads
|
243 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
244 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
245 |
+
|
246 |
+
# Final linear projection
|
247 |
+
attn_output = self.o_proj(attn_output)
|
248 |
+
|
249 |
+
if not output_attentions:
|
250 |
+
attn_weights = None
|
251 |
+
|
252 |
+
return attn_output, attn_weights, past_key_value
|
253 |
+
|
254 |
+
|
255 |
+
class DecoderLayer(nn.Module):
|
256 |
+
def __init__(self, config: HelpingAIConfig):
|
257 |
+
super().__init__()
|
258 |
+
self.self_attn = Attention(config)
|
259 |
+
self.mlp = MLP(config)
|
260 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
261 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
262 |
+
|
263 |
+
def forward(
|
264 |
+
self,
|
265 |
+
hidden_states: Optional[torch.FloatTensor],
|
266 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
267 |
+
position_ids: Optional[torch.LongTensor] = None,
|
268 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
269 |
+
output_attentions: Optional[bool] = False,
|
270 |
+
use_cache: Optional[bool] = False,
|
271 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
272 |
+
residual = hidden_states
|
273 |
+
|
274 |
+
hidden_states = self.input_layernorm(hidden_states)
|
275 |
+
|
276 |
+
# Self Attention
|
277 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
278 |
+
hidden_states=hidden_states,
|
279 |
+
attention_mask=attention_mask,
|
280 |
+
position_ids=position_ids,
|
281 |
+
past_key_value=past_key_value,
|
282 |
+
output_attentions=output_attentions,
|
283 |
+
use_cache=use_cache,
|
284 |
+
)
|
285 |
+
hidden_states = residual + hidden_states
|
286 |
+
|
287 |
+
# Fully Connected
|
288 |
+
residual = hidden_states
|
289 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
290 |
+
hidden_states = self.mlp(hidden_states)
|
291 |
+
hidden_states = residual + hidden_states
|
292 |
+
|
293 |
+
outputs = (hidden_states,)
|
294 |
+
|
295 |
+
if output_attentions:
|
296 |
+
outputs += (self_attn_weights,)
|
297 |
+
|
298 |
+
if use_cache:
|
299 |
+
outputs += (present_key_value,)
|
300 |
+
|
301 |
+
return outputs
|
302 |
+
|
303 |
+
|
304 |
+
class HelpingAIPreTrainedModel(PreTrainedModel):
|
305 |
+
"""An abstract class to handle weights initialization and a simple interface
|
306 |
+
for downloading and loading pretrained models.
|
307 |
+
"""
|
308 |
+
|
309 |
+
config_class = HelpingAIConfig
|
310 |
+
base_model_prefix = "transformer"
|
311 |
+
supports_gradient_checkpointing = True
|
312 |
+
_no_split_modules = ["DecoderLayer"]
|
313 |
+
_skip_keys_device_placement = "past_key_values"
|
314 |
+
|
315 |
+
def _init_weights(self, module: nn.Module):
|
316 |
+
"""Initialize the weights"""
|
317 |
+
if isinstance(module, nn.Linear):
|
318 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
319 |
+
if module.bias is not None:
|
320 |
+
module.bias.data.zero_()
|
321 |
+
elif isinstance(module, nn.Embedding):
|
322 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
323 |
+
if module.padding_idx is not None:
|
324 |
+
module.weight.data[module.padding_idx].zero_()
|
325 |
+
elif isinstance(module, nn.LayerNorm):
|
326 |
+
module.bias.data.zero_()
|
327 |
+
module.weight.data.fill_(1.0)
|
328 |
+
|
329 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value=False):
|
330 |
+
if isinstance(module, HelpingAIModel):
|
331 |
+
module.gradient_checkpointing = value
|
332 |
+
|
333 |
+
|
334 |
+
class HelpingAIModel(HelpingAIPreTrainedModel):
|
335 |
+
def __init__(self, config: HelpingAIConfig):
|
336 |
+
super().__init__(config)
|
337 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
338 |
+
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
339 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
340 |
+
|
341 |
+
self.gradient_checkpointing = False
|
342 |
+
# Initialize weights and apply final processing
|
343 |
+
self.post_init()
|
344 |
+
|
345 |
+
def get_input_embeddings(self):
|
346 |
+
return self.embed_tokens
|
347 |
+
|
348 |
+
def set_input_embeddings(self, value: nn.Module):
|
349 |
+
self.embed_tokens = value
|
350 |
+
|
351 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
352 |
+
def _prepare_decoder_attention_mask(
|
353 |
+
self,
|
354 |
+
attention_mask: torch.Tensor,
|
355 |
+
input_shape: torch.Size,
|
356 |
+
inputs_embeds: torch.Tensor,
|
357 |
+
past_key_values_length: int,
|
358 |
+
):
|
359 |
+
# Create causal mask
|
360 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
361 |
+
combined_attention_mask = None
|
362 |
+
if input_shape[-1] > 1:
|
363 |
+
combined_attention_mask = _make_causal_mask(
|
364 |
+
input_shape,
|
365 |
+
inputs_embeds.dtype,
|
366 |
+
device=inputs_embeds.device,
|
367 |
+
past_key_values_length=past_key_values_length,
|
368 |
+
)
|
369 |
+
|
370 |
+
if attention_mask is not None:
|
371 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
372 |
+
expanded_attn_mask = _expand_mask(
|
373 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
374 |
+
).to(inputs_embeds.device)
|
375 |
+
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
376 |
+
|
377 |
+
return combined_attention_mask
|
378 |
+
|
379 |
+
def forward(
|
380 |
+
self,
|
381 |
+
input_ids: Optional[torch.LongTensor] = None,
|
382 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
383 |
+
position_ids: Optional[torch.LongTensor] = None,
|
384 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
385 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
386 |
+
use_cache: Optional[bool] = None,
|
387 |
+
output_attentions: Optional[bool] = None,
|
388 |
+
output_hidden_states: Optional[bool] = None,
|
389 |
+
return_dict: Optional[bool] = None,
|
390 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
391 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
392 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
393 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
394 |
+
|
395 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
396 |
+
|
397 |
+
# Retrieve input_ids and inputs_embeds
|
398 |
+
if input_ids is not None and inputs_embeds is not None:
|
399 |
+
raise ValueError(
|
400 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
401 |
+
)
|
402 |
+
elif input_ids is not None:
|
403 |
+
batch_size, seq_length = input_ids.shape
|
404 |
+
elif inputs_embeds is not None:
|
405 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
406 |
+
else:
|
407 |
+
raise ValueError(
|
408 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
409 |
+
)
|
410 |
+
|
411 |
+
seq_length_with_past = seq_length
|
412 |
+
past_key_values_length = 0
|
413 |
+
|
414 |
+
if past_key_values is not None:
|
415 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
416 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
417 |
+
|
418 |
+
if position_ids is None:
|
419 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
420 |
+
position_ids = torch.arange(
|
421 |
+
past_key_values_length,
|
422 |
+
seq_length + past_key_values_length,
|
423 |
+
dtype=torch.long,
|
424 |
+
device=device,
|
425 |
+
)
|
426 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
427 |
+
else:
|
428 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
429 |
+
|
430 |
+
if inputs_embeds is None:
|
431 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
432 |
+
# Embed positions
|
433 |
+
if attention_mask is None:
|
434 |
+
attention_mask = torch.ones(
|
435 |
+
(batch_size, seq_length_with_past),
|
436 |
+
dtype=torch.bool,
|
437 |
+
device=inputs_embeds.device,
|
438 |
+
)
|
439 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
440 |
+
attention_mask,
|
441 |
+
(batch_size, seq_length),
|
442 |
+
inputs_embeds,
|
443 |
+
past_key_values_length,
|
444 |
+
)
|
445 |
+
|
446 |
+
hidden_states = inputs_embeds
|
447 |
+
|
448 |
+
if self.gradient_checkpointing and self.training:
|
449 |
+
if use_cache:
|
450 |
+
logger.warning(
|
451 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
452 |
+
)
|
453 |
+
use_cache = False
|
454 |
+
|
455 |
+
# Decoder layers
|
456 |
+
all_hidden_states = () if output_hidden_states else None
|
457 |
+
all_self_attns = () if output_attentions else None
|
458 |
+
next_decoder_cache = () if use_cache else None
|
459 |
+
|
460 |
+
for idx, decoder_layer in enumerate(self.layers):
|
461 |
+
if output_hidden_states:
|
462 |
+
all_hidden_states += (hidden_states,)
|
463 |
+
|
464 |
+
past_key_value = (
|
465 |
+
past_key_values[idx] if past_key_values is not None else None
|
466 |
+
)
|
467 |
+
|
468 |
+
if self.gradient_checkpointing and self.training:
|
469 |
+
|
470 |
+
def create_custom_forward(module):
|
471 |
+
def custom_forward(*inputs):
|
472 |
+
# None for past_key_value
|
473 |
+
return module(*inputs, past_key_value, output_attentions)
|
474 |
+
|
475 |
+
return custom_forward
|
476 |
+
|
477 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
478 |
+
create_custom_forward(decoder_layer),
|
479 |
+
hidden_states,
|
480 |
+
attention_mask,
|
481 |
+
position_ids,
|
482 |
+
)
|
483 |
+
else:
|
484 |
+
layer_outputs = decoder_layer(
|
485 |
+
hidden_states,
|
486 |
+
attention_mask=attention_mask,
|
487 |
+
position_ids=position_ids,
|
488 |
+
past_key_value=past_key_value,
|
489 |
+
output_attentions=output_attentions,
|
490 |
+
use_cache=use_cache,
|
491 |
+
)
|
492 |
+
|
493 |
+
hidden_states = layer_outputs[0]
|
494 |
+
|
495 |
+
if use_cache:
|
496 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
497 |
+
|
498 |
+
if output_attentions:
|
499 |
+
all_self_attns += (layer_outputs[1],)
|
500 |
+
|
501 |
+
hidden_states = self.norm(hidden_states)
|
502 |
+
|
503 |
+
# Add hidden states from the last decoder layer
|
504 |
+
if output_hidden_states:
|
505 |
+
all_hidden_states += (hidden_states,)
|
506 |
+
|
507 |
+
next_cache = next_decoder_cache if use_cache else None
|
508 |
+
if not return_dict:
|
509 |
+
return tuple(
|
510 |
+
v
|
511 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
512 |
+
if v is not None
|
513 |
+
)
|
514 |
+
return BaseModelOutputWithPast(
|
515 |
+
last_hidden_state=hidden_states,
|
516 |
+
past_key_values=next_cache,
|
517 |
+
hidden_states=all_hidden_states,
|
518 |
+
attentions=all_self_attns,
|
519 |
+
)
|
520 |
+
|
521 |
+
|
522 |
+
class HelpingAIForCausalLM(HelpingAIPreTrainedModel):
|
523 |
+
_tied_weights_keys = ["lm_head.weight"]
|
524 |
+
|
525 |
+
def __init__(self, config: HelpingAIConfig):
|
526 |
+
super().__init__(config)
|
527 |
+
|
528 |
+
self.model = HelpingAIModel(config)
|
529 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
530 |
+
|
531 |
+
# Initialize weights and apply final processing
|
532 |
+
self.post_init()
|
533 |
+
|
534 |
+
def get_input_embeddings(self):
|
535 |
+
return self.model.embed_tokens
|
536 |
+
|
537 |
+
def set_input_embeddings(self, value):
|
538 |
+
self.model.embed_tokens = value
|
539 |
+
|
540 |
+
def get_output_embeddings(self):
|
541 |
+
return self.lm_head
|
542 |
+
|
543 |
+
def set_output_embeddings(self, new_embeddings: nn.Module):
|
544 |
+
self.lm_head = new_embeddings
|
545 |
+
|
546 |
+
def get_decoder(self):
|
547 |
+
return self.transformer
|
548 |
+
|
549 |
+
def set_decoder(self, decoder):
|
550 |
+
self.transformer = decoder
|
551 |
+
|
552 |
+
def forward(
|
553 |
+
self,
|
554 |
+
input_ids: Optional[torch.LongTensor] = None,
|
555 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
556 |
+
position_ids: Optional[torch.LongTensor] = None,
|
557 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
558 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
559 |
+
labels: Optional[torch.LongTensor] = None,
|
560 |
+
use_cache: Optional[bool] = None,
|
561 |
+
output_attentions: Optional[bool] = None,
|
562 |
+
output_hidden_states: Optional[bool] = None,
|
563 |
+
return_dict: Optional[bool] = None,
|
564 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
565 |
+
output_attentions = (
|
566 |
+
output_attentions
|
567 |
+
if output_attentions is not None
|
568 |
+
else self.config.output_attentions
|
569 |
+
)
|
570 |
+
output_hidden_states = (
|
571 |
+
output_hidden_states
|
572 |
+
if output_hidden_states is not None
|
573 |
+
else self.config.output_hidden_states
|
574 |
+
)
|
575 |
+
return_dict = (
|
576 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
577 |
+
)
|
578 |
+
|
579 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
580 |
+
outputs = self.model(
|
581 |
+
input_ids,
|
582 |
+
attention_mask=attention_mask,
|
583 |
+
position_ids=position_ids,
|
584 |
+
past_key_values=past_key_values,
|
585 |
+
inputs_embeds=inputs_embeds,
|
586 |
+
use_cache=use_cache,
|
587 |
+
output_attentions=output_attentions,
|
588 |
+
output_hidden_states=output_hidden_states,
|
589 |
+
return_dict=return_dict,
|
590 |
+
)
|
591 |
+
|
592 |
+
hidden_states = outputs[0]
|
593 |
+
logits = self.lm_head(hidden_states).float()
|
594 |
+
|
595 |
+
loss = None
|
596 |
+
if labels is not None:
|
597 |
+
# Shift so that tokens < n predict n
|
598 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
599 |
+
shift_labels = labels[..., 1:].contiguous()
|
600 |
+
# Flatten the tokens
|
601 |
+
loss_fct = CrossEntropyLoss()
|
602 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
603 |
+
shift_labels = shift_labels.view(-1)
|
604 |
+
# Enable model parallelism
|
605 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
606 |
+
loss = loss_fct(shift_logits, shift_labels)
|
607 |
+
|
608 |
+
if not return_dict:
|
609 |
+
output = (logits,) + outputs[1:]
|
610 |
+
return (loss,) + output if loss is not None else output
|
611 |
+
|
612 |
+
return CausalLMOutputWithPast(
|
613 |
+
loss=loss,
|
614 |
+
logits=logits,
|
615 |
+
past_key_values=outputs.past_key_values,
|
616 |
+
hidden_states=outputs.hidden_states,
|
617 |
+
attentions=outputs.attentions,
|
618 |
+
)
|
619 |
+
|
620 |
+
def prepare_inputs_for_generation(
|
621 |
+
self,
|
622 |
+
input_ids,
|
623 |
+
past_key_values: Optional[torch.Tensor] = None,
|
624 |
+
attention_mask: Optional[torch.Tensor] = None,
|
625 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
626 |
+
**kwargs,
|
627 |
+
):
|
628 |
+
# Trim decoder_input_ids if past is used
|
629 |
+
if past_key_values and past_key_values[0] is not None:
|
630 |
+
input_ids = input_ids[:, -1:]
|
631 |
+
|
632 |
+
position_ids = kwargs.get("position_ids", None)
|
633 |
+
if attention_mask is not None and position_ids is None:
|
634 |
+
# Create position_ids on the fly for batch generation
|
635 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
636 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
637 |
+
if past_key_values:
|
638 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
639 |
+
|
640 |
+
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
641 |
+
if inputs_embeds is not None and past_key_values is None:
|
642 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
643 |
+
else:
|
644 |
+
model_inputs = {"input_ids": input_ids}
|
645 |
+
|
646 |
+
model_inputs.update(
|
647 |
+
{
|
648 |
+
"attention_mask": attention_mask,
|
649 |
+
"past_key_values": past_key_values,
|
650 |
+
"use_cache": kwargs.get("use_cache"),
|
651 |
+
"position_ids": position_ids,
|
652 |
+
}
|
653 |
+
)
|
654 |
+
return model_inputs
|
655 |
+
|
656 |
+
@staticmethod
|
657 |
+
def _reorder_cache(past_key_values, beam_idx):
|
658 |
+
reordered_past = ()
|
659 |
+
for layer_past in past_key_values:
|
660 |
+
reordered_past += (
|
661 |
+
tuple(
|
662 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
663 |
+
for past_state in layer_past
|
664 |
+
),
|
665 |
+
)
|
666 |
+
return reordered_past
|
667 |
+
|
668 |
+
|
669 |
+
HelpingAIConfig.register_for_auto_class()
|
670 |
+
HelpingAIForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
pytorch_model-00001-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca3187da2ba70772c77cab754eafd535b0e4a530c5c43ec3449257461ecd30d3
|
3 |
+
size 8837690076
|
pytorch_model-00002-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebc9777c81fbd62d2895775cf659f00f0cf6a66d3f65c5e00859ec28e64fa4f5
|
3 |
+
size 9865757318
|
pytorch_model-00003-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b474d55ae804d828ede1dfd59b90b494985d260f7aafcab711165d0060863b84
|
3 |
+
size 9865757318
|
pytorch_model-00004-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a472b3eb2e3a5c6a8d01594f3839ca802a641726b9761853aef72f943a0fdd54
|
3 |
+
size 9865757318
|
pytorch_model-00005-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fade6a15060368fbd037d9638945d71c853534f1ed87e48f6b0cce6663ea348
|
3 |
+
size 9865757318
|
pytorch_model-00006-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3861b788114ac983fec33c8a8f789ce0aac41f8d0c5d69c110abd462c85ea4c
|
3 |
+
size 9865757382
|
pytorch_model-00007-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56e4cd89630a2725e630b1e13e1db882203474bfcb92ace7620989c1d201104e
|
3 |
+
size 9865757382
|
pytorch_model-00008-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba7375b56a1535f88c5f1f488e37212b708369e8b98fbac039497e1b7286e656
|
3 |
+
size 9865757382
|
pytorch_model-00009-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7de2e69a9db40b2e2f2441da2cda4e3f90776d9e23850b7425625c491a255aad
|
3 |
+
size 9865757382
|
pytorch_model-00010-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70dee8587d56760414f1f6b5e28de93db450d46e31ef75efede83c3ea438bab4
|
3 |
+
size 9865757382
|
pytorch_model-00011-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:136b56084635f1c422cddb5185db34fb80866a84c7170a43cb40db631a230ac6
|
3 |
+
size 9865757382
|
pytorch_model-00012-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38fe8957ccaee533e54f97aa95b33eee1c7c2de10424c76142d48ad800de9103
|
3 |
+
size 9865757382
|
pytorch_model-00013-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e583bd86212872a58aba123e0cfd7f96d01186df1823e6e093ea4367c2d2cbd3
|
3 |
+
size 9865757382
|
pytorch_model-00014-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7f6c50bb9710c879a791d59974fbc5ce2fc4f5eae1a96f12ca15973bcab7640
|
3 |
+
size 9865757382
|
pytorch_model-00015-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bc99c13110b14e03e38e7af312c7aa3d5655dad89afdc6db872aa144fb07c39
|
3 |
+
size 9865757382
|
pytorch_model-00016-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d59dc96927dd17d1945eeaea31d97d5feaa6e3c3dd1b60c638d25a7dd0796bf
|
3 |
+
size 9865757382
|
pytorch_model-00017-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:162d15ec31369b932d37a6cd04c85bc546bd350f3235eb096c445587a913e370
|
3 |
+
size 9865757382
|
pytorch_model-00018-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:189949529ef7a5533fef059f86de583343e14e9ad8799d0ea67a51890b452cd7
|
3 |
+
size 9865757382
|
pytorch_model-00019-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:351623dc9b9131e771f7e995a8b02261547a2a4249f8d8ced7de291f370e6d84
|
3 |
+
size 9865757382
|
pytorch_model-00020-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:217f9ea1fc5ff5a7910ea9222ec70fc24a06b2ccfbfc69924c94555d40141986
|
3 |
+
size 9865757382
|
pytorch_model-00021-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d46df3ba9538a5790d2c35264af6516ee9357ba9760216b2d8ec057000b1316
|
3 |
+
size 9865757382
|
pytorch_model-00022-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a99aeb8cb6bfce134df868b787c4680439a21d9185add42ff45d067c624841ac
|
3 |
+
size 9865757382
|
pytorch_model-00023-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a46f4b50de561c80d3a882c7f8ed498231b89c36919da417d0675fceaf303e62
|
3 |
+
size 9865757382
|
pytorch_model-00024-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f65841392f00a806c3b4b0081befd1260f854cea1d60ab2d87939950b2b2e88
|
3 |
+
size 9865757382
|
pytorch_model-00025-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fac5c1abeb05511cf496f47984a0efcce929678bc01352eae240e988cfe15e52
|
3 |
+
size 9865757382
|
pytorch_model-00026-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8a952fb468ce32332307880ad7a54deec7119608ce2d02e3556f85626a1d111
|
3 |
+
size 9865757382
|
pytorch_model-00027-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c331a3536db08191b2704dc78c01aeeb62207f2aaf4db0188d3fd4d4553ac96
|
3 |
+
size 9865757382
|
pytorch_model-00028-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c189d575771c8c9e96030f91e3c532ca006c04fc573dd4ac26399f1305e515c0
|
3 |
+
size 9865757382
|
pytorch_model-00029-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d9e5e6c448f8f6e4d8b76c08ccd43f00a28c819111b86b438578bd4793b809c
|
3 |
+
size 9865757382
|
pytorch_model-00030-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:666234aee85def980de53cbe63d86922e4371d14e13ba380bd665926cf16260e
|
3 |
+
size 9865757382
|
pytorch_model-00031-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d32da8fbe15f3a8dda294f63d4e1d210796e3a952fc0488c8ff4f2a09666235
|
3 |
+
size 9865757382
|
pytorch_model-00032-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53371c3c0a1e97ed02db8e5a83ab76a038a386724c10522bd05c1ceff9b37908
|
3 |
+
size 9865757382
|
pytorch_model-00033-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:647c442ff7fd4896fc2915f4e6f4bd85b12aa4663a5d5d6e1f56bf0b585c3434
|
3 |
+
size 9865757382
|
pytorch_model-00034-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf885237c29d7c83babd2684c9ada2a6227a025e56c3ab6b6d4e5583c47927ee
|
3 |
+
size 9865757382
|
pytorch_model-00035-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddb922a126dc39bfe52277d189b8dcb21e56ff50d557e7320b07897972fdd599
|
3 |
+
size 9865757382
|
pytorch_model-00036-of-00036.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b96d0d49263134b6ac99130ecef9500ba2eef11c89663362a0f59f39e3285838
|
3 |
+
size 8221416146
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 352494542848
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00001-of-00036.bin",
|
7 |
+
"transformer.h.0.input_layernorm.bias": "pytorch_model-00001-of-00036.bin",
|
8 |
+
"transformer.h.0.input_layernorm.weight": "pytorch_model-00001-of-00036.bin",
|
9 |
+
"transformer.h.0.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00036.bin",
|
10 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00036.bin",
|
11 |
+
"transformer.h.0.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00036.bin",
|
12 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00036.bin",
|
13 |
+
"transformer.h.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00036.bin",
|
14 |
+
"transformer.h.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00036.bin",
|
15 |
+
"transformer.h.0.self_attention.dense.bias": "pytorch_model-00001-of-00036.bin",
|
16 |
+
"transformer.h.0.self_attention.dense.weight": "pytorch_model-00001-of-00036.bin",
|
17 |
+
"transformer.h.0.self_attention.query_key_value.bias": "pytorch_model-00001-of-00036.bin",
|
18 |
+
"transformer.h.0.self_attention.query_key_value.weight": "pytorch_model-00001-of-00036.bin",
|
19 |
+
"transformer.h.1.input_layernorm.bias": "pytorch_model-00002-of-00036.bin",
|
20 |
+
"transformer.h.1.input_layernorm.weight": "pytorch_model-00002-of-00036.bin",
|
21 |
+
"transformer.h.1.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00036.bin",
|
22 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00036.bin",
|
23 |
+
"transformer.h.1.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00036.bin",
|
24 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00036.bin",
|
25 |
+
"transformer.h.1.post_attention_layernorm.bias": "pytorch_model-00002-of-00036.bin",
|
26 |
+
"transformer.h.1.post_attention_layernorm.weight": "pytorch_model-00002-of-00036.bin",
|
27 |
+
"transformer.h.1.self_attention.dense.bias": "pytorch_model-00002-of-00036.bin",
|
28 |
+
"transformer.h.1.self_attention.dense.weight": "pytorch_model-00002-of-00036.bin",
|
29 |
+
"transformer.h.1.self_attention.query_key_value.bias": "pytorch_model-00002-of-00036.bin",
|
30 |
+
"transformer.h.1.self_attention.query_key_value.weight": "pytorch_model-00002-of-00036.bin",
|
31 |
+
"transformer.h.10.input_layernorm.bias": "pytorch_model-00006-of-00036.bin",
|
32 |
+
"transformer.h.10.input_layernorm.weight": "pytorch_model-00006-of-00036.bin",
|
33 |
+
"transformer.h.10.mlp.dense_4h_to_h.bias": "pytorch_model-00007-of-00036.bin",
|
34 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00036.bin",
|
35 |
+
"transformer.h.10.mlp.dense_h_to_4h.bias": "pytorch_model-00007-of-00036.bin",
|
36 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00036.bin",
|
37 |
+
"transformer.h.10.post_attention_layernorm.bias": "pytorch_model-00006-of-00036.bin",
|
38 |
+
"transformer.h.10.post_attention_layernorm.weight": "pytorch_model-00006-of-00036.bin",
|
39 |
+
"transformer.h.10.self_attention.dense.bias": "pytorch_model-00006-of-00036.bin",
|
40 |
+
"transformer.h.10.self_attention.dense.weight": "pytorch_model-00006-of-00036.bin",
|
41 |
+
"transformer.h.10.self_attention.query_key_value.bias": "pytorch_model-00006-of-00036.bin",
|
42 |
+
"transformer.h.10.self_attention.query_key_value.weight": "pytorch_model-00006-of-00036.bin",
|
43 |
+
"transformer.h.11.input_layernorm.bias": "pytorch_model-00007-of-00036.bin",
|
44 |
+
"transformer.h.11.input_layernorm.weight": "pytorch_model-00007-of-00036.bin",
|
45 |
+
"transformer.h.11.mlp.dense_4h_to_h.bias": "pytorch_model-00007-of-00036.bin",
|
46 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00036.bin",
|
47 |
+
"transformer.h.11.mlp.dense_h_to_4h.bias": "pytorch_model-00007-of-00036.bin",
|
48 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00036.bin",
|
49 |
+
"transformer.h.11.post_attention_layernorm.bias": "pytorch_model-00007-of-00036.bin",
|
50 |
+
"transformer.h.11.post_attention_layernorm.weight": "pytorch_model-00007-of-00036.bin",
|
51 |
+
"transformer.h.11.self_attention.dense.bias": "pytorch_model-00007-of-00036.bin",
|
52 |
+
"transformer.h.11.self_attention.dense.weight": "pytorch_model-00007-of-00036.bin",
|
53 |
+
"transformer.h.11.self_attention.query_key_value.bias": "pytorch_model-00007-of-00036.bin",
|
54 |
+
"transformer.h.11.self_attention.query_key_value.weight": "pytorch_model-00007-of-00036.bin",
|
55 |
+
"transformer.h.12.input_layernorm.bias": "pytorch_model-00007-of-00036.bin",
|
56 |
+
"transformer.h.12.input_layernorm.weight": "pytorch_model-00007-of-00036.bin",
|
57 |
+
"transformer.h.12.mlp.dense_4h_to_h.bias": "pytorch_model-00008-of-00036.bin",
|
58 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00036.bin",
|
59 |
+
"transformer.h.12.mlp.dense_h_to_4h.bias": "pytorch_model-00008-of-00036.bin",
|
60 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00036.bin",
|
61 |
+
"transformer.h.12.post_attention_layernorm.bias": "pytorch_model-00007-of-00036.bin",
|
62 |
+
"transformer.h.12.post_attention_layernorm.weight": "pytorch_model-00007-of-00036.bin",
|
63 |
+
"transformer.h.12.self_attention.dense.bias": "pytorch_model-00007-of-00036.bin",
|
64 |
+
"transformer.h.12.self_attention.dense.weight": "pytorch_model-00007-of-00036.bin",
|
65 |
+
"transformer.h.12.self_attention.query_key_value.bias": "pytorch_model-00007-of-00036.bin",
|
66 |
+
"transformer.h.12.self_attention.query_key_value.weight": "pytorch_model-00007-of-00036.bin",
|
67 |
+
"transformer.h.13.input_layernorm.bias": "pytorch_model-00008-of-00036.bin",
|
68 |
+
"transformer.h.13.input_layernorm.weight": "pytorch_model-00008-of-00036.bin",
|
69 |
+
"transformer.h.13.mlp.dense_4h_to_h.bias": "pytorch_model-00008-of-00036.bin",
|
70 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00036.bin",
|
71 |
+
"transformer.h.13.mlp.dense_h_to_4h.bias": "pytorch_model-00008-of-00036.bin",
|
72 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00036.bin",
|
73 |
+
"transformer.h.13.post_attention_layernorm.bias": "pytorch_model-00008-of-00036.bin",
|
74 |
+
"transformer.h.13.post_attention_layernorm.weight": "pytorch_model-00008-of-00036.bin",
|
75 |
+
"transformer.h.13.self_attention.dense.bias": "pytorch_model-00008-of-00036.bin",
|
76 |
+
"transformer.h.13.self_attention.dense.weight": "pytorch_model-00008-of-00036.bin",
|
77 |
+
"transformer.h.13.self_attention.query_key_value.bias": "pytorch_model-00008-of-00036.bin",
|
78 |
+
"transformer.h.13.self_attention.query_key_value.weight": "pytorch_model-00008-of-00036.bin",
|
79 |
+
"transformer.h.14.input_layernorm.bias": "pytorch_model-00008-of-00036.bin",
|
80 |
+
"transformer.h.14.input_layernorm.weight": "pytorch_model-00008-of-00036.bin",
|
81 |
+
"transformer.h.14.mlp.dense_4h_to_h.bias": "pytorch_model-00009-of-00036.bin",
|
82 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00036.bin",
|
83 |
+
"transformer.h.14.mlp.dense_h_to_4h.bias": "pytorch_model-00009-of-00036.bin",
|
84 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00036.bin",
|
85 |
+
"transformer.h.14.post_attention_layernorm.bias": "pytorch_model-00008-of-00036.bin",
|
86 |
+
"transformer.h.14.post_attention_layernorm.weight": "pytorch_model-00008-of-00036.bin",
|
87 |
+
"transformer.h.14.self_attention.dense.bias": "pytorch_model-00008-of-00036.bin",
|
88 |
+
"transformer.h.14.self_attention.dense.weight": "pytorch_model-00008-of-00036.bin",
|
89 |
+
"transformer.h.14.self_attention.query_key_value.bias": "pytorch_model-00008-of-00036.bin",
|
90 |
+
"transformer.h.14.self_attention.query_key_value.weight": "pytorch_model-00008-of-00036.bin",
|
91 |
+
"transformer.h.15.input_layernorm.bias": "pytorch_model-00009-of-00036.bin",
|
92 |
+
"transformer.h.15.input_layernorm.weight": "pytorch_model-00009-of-00036.bin",
|
93 |
+
"transformer.h.15.mlp.dense_4h_to_h.bias": "pytorch_model-00009-of-00036.bin",
|
94 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00036.bin",
|
95 |
+
"transformer.h.15.mlp.dense_h_to_4h.bias": "pytorch_model-00009-of-00036.bin",
|
96 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00036.bin",
|
97 |
+
"transformer.h.15.post_attention_layernorm.bias": "pytorch_model-00009-of-00036.bin",
|
98 |
+
"transformer.h.15.post_attention_layernorm.weight": "pytorch_model-00009-of-00036.bin",
|
99 |
+
"transformer.h.15.self_attention.dense.bias": "pytorch_model-00009-of-00036.bin",
|
100 |
+
"transformer.h.15.self_attention.dense.weight": "pytorch_model-00009-of-00036.bin",
|
101 |
+
"transformer.h.15.self_attention.query_key_value.bias": "pytorch_model-00009-of-00036.bin",
|
102 |
+
"transformer.h.15.self_attention.query_key_value.weight": "pytorch_model-00009-of-00036.bin",
|
103 |
+
"transformer.h.16.input_layernorm.bias": "pytorch_model-00009-of-00036.bin",
|
104 |
+
"transformer.h.16.input_layernorm.weight": "pytorch_model-00009-of-00036.bin",
|
105 |
+
"transformer.h.16.mlp.dense_4h_to_h.bias": "pytorch_model-00010-of-00036.bin",
|
106 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00036.bin",
|
107 |
+
"transformer.h.16.mlp.dense_h_to_4h.bias": "pytorch_model-00010-of-00036.bin",
|
108 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00036.bin",
|
109 |
+
"transformer.h.16.post_attention_layernorm.bias": "pytorch_model-00009-of-00036.bin",
|
110 |
+
"transformer.h.16.post_attention_layernorm.weight": "pytorch_model-00009-of-00036.bin",
|
111 |
+
"transformer.h.16.self_attention.dense.bias": "pytorch_model-00009-of-00036.bin",
|
112 |
+
"transformer.h.16.self_attention.dense.weight": "pytorch_model-00009-of-00036.bin",
|
113 |
+
"transformer.h.16.self_attention.query_key_value.bias": "pytorch_model-00009-of-00036.bin",
|
114 |
+
"transformer.h.16.self_attention.query_key_value.weight": "pytorch_model-00009-of-00036.bin",
|
115 |
+
"transformer.h.17.input_layernorm.bias": "pytorch_model-00010-of-00036.bin",
|
116 |
+
"transformer.h.17.input_layernorm.weight": "pytorch_model-00010-of-00036.bin",
|
117 |
+
"transformer.h.17.mlp.dense_4h_to_h.bias": "pytorch_model-00010-of-00036.bin",
|
118 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00036.bin",
|
119 |
+
"transformer.h.17.mlp.dense_h_to_4h.bias": "pytorch_model-00010-of-00036.bin",
|
120 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00036.bin",
|
121 |
+
"transformer.h.17.post_attention_layernorm.bias": "pytorch_model-00010-of-00036.bin",
|
122 |
+
"transformer.h.17.post_attention_layernorm.weight": "pytorch_model-00010-of-00036.bin",
|
123 |
+
"transformer.h.17.self_attention.dense.bias": "pytorch_model-00010-of-00036.bin",
|
124 |
+
"transformer.h.17.self_attention.dense.weight": "pytorch_model-00010-of-00036.bin",
|
125 |
+
"transformer.h.17.self_attention.query_key_value.bias": "pytorch_model-00010-of-00036.bin",
|
126 |
+
"transformer.h.17.self_attention.query_key_value.weight": "pytorch_model-00010-of-00036.bin",
|
127 |
+
"transformer.h.18.input_layernorm.bias": "pytorch_model-00010-of-00036.bin",
|
128 |
+
"transformer.h.18.input_layernorm.weight": "pytorch_model-00010-of-00036.bin",
|
129 |
+
"transformer.h.18.mlp.dense_4h_to_h.bias": "pytorch_model-00011-of-00036.bin",
|
130 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00036.bin",
|
131 |
+
"transformer.h.18.mlp.dense_h_to_4h.bias": "pytorch_model-00011-of-00036.bin",
|
132 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00036.bin",
|
133 |
+
"transformer.h.18.post_attention_layernorm.bias": "pytorch_model-00010-of-00036.bin",
|
134 |
+
"transformer.h.18.post_attention_layernorm.weight": "pytorch_model-00010-of-00036.bin",
|
135 |
+
"transformer.h.18.self_attention.dense.bias": "pytorch_model-00010-of-00036.bin",
|
136 |
+
"transformer.h.18.self_attention.dense.weight": "pytorch_model-00010-of-00036.bin",
|
137 |
+
"transformer.h.18.self_attention.query_key_value.bias": "pytorch_model-00010-of-00036.bin",
|
138 |
+
"transformer.h.18.self_attention.query_key_value.weight": "pytorch_model-00010-of-00036.bin",
|
139 |
+
"transformer.h.19.input_layernorm.bias": "pytorch_model-00011-of-00036.bin",
|
140 |
+
"transformer.h.19.input_layernorm.weight": "pytorch_model-00011-of-00036.bin",
|
141 |
+
"transformer.h.19.mlp.dense_4h_to_h.bias": "pytorch_model-00011-of-00036.bin",
|
142 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00036.bin",
|
143 |
+
"transformer.h.19.mlp.dense_h_to_4h.bias": "pytorch_model-00011-of-00036.bin",
|
144 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00036.bin",
|
145 |
+
"transformer.h.19.post_attention_layernorm.bias": "pytorch_model-00011-of-00036.bin",
|
146 |
+
"transformer.h.19.post_attention_layernorm.weight": "pytorch_model-00011-of-00036.bin",
|
147 |
+
"transformer.h.19.self_attention.dense.bias": "pytorch_model-00011-of-00036.bin",
|
148 |
+
"transformer.h.19.self_attention.dense.weight": "pytorch_model-00011-of-00036.bin",
|
149 |
+
"transformer.h.19.self_attention.query_key_value.bias": "pytorch_model-00011-of-00036.bin",
|
150 |
+
"transformer.h.19.self_attention.query_key_value.weight": "pytorch_model-00011-of-00036.bin",
|
151 |
+
"transformer.h.2.input_layernorm.bias": "pytorch_model-00002-of-00036.bin",
|
152 |
+
"transformer.h.2.input_layernorm.weight": "pytorch_model-00002-of-00036.bin",
|
153 |
+
"transformer.h.2.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00036.bin",
|
154 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00036.bin",
|
155 |
+
"transformer.h.2.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00036.bin",
|
156 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00036.bin",
|
157 |
+
"transformer.h.2.post_attention_layernorm.bias": "pytorch_model-00002-of-00036.bin",
|
158 |
+
"transformer.h.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00036.bin",
|
159 |
+
"transformer.h.2.self_attention.dense.bias": "pytorch_model-00002-of-00036.bin",
|
160 |
+
"transformer.h.2.self_attention.dense.weight": "pytorch_model-00002-of-00036.bin",
|
161 |
+
"transformer.h.2.self_attention.query_key_value.bias": "pytorch_model-00002-of-00036.bin",
|
162 |
+
"transformer.h.2.self_attention.query_key_value.weight": "pytorch_model-00002-of-00036.bin",
|
163 |
+
"transformer.h.20.input_layernorm.bias": "pytorch_model-00011-of-00036.bin",
|
164 |
+
"transformer.h.20.input_layernorm.weight": "pytorch_model-00011-of-00036.bin",
|
165 |
+
"transformer.h.20.mlp.dense_4h_to_h.bias": "pytorch_model-00012-of-00036.bin",
|
166 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00036.bin",
|
167 |
+
"transformer.h.20.mlp.dense_h_to_4h.bias": "pytorch_model-00012-of-00036.bin",
|
168 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00036.bin",
|
169 |
+
"transformer.h.20.post_attention_layernorm.bias": "pytorch_model-00011-of-00036.bin",
|
170 |
+
"transformer.h.20.post_attention_layernorm.weight": "pytorch_model-00011-of-00036.bin",
|
171 |
+
"transformer.h.20.self_attention.dense.bias": "pytorch_model-00011-of-00036.bin",
|
172 |
+
"transformer.h.20.self_attention.dense.weight": "pytorch_model-00011-of-00036.bin",
|
173 |
+
"transformer.h.20.self_attention.query_key_value.bias": "pytorch_model-00011-of-00036.bin",
|
174 |
+
"transformer.h.20.self_attention.query_key_value.weight": "pytorch_model-00011-of-00036.bin",
|
175 |
+
"transformer.h.21.input_layernorm.bias": "pytorch_model-00012-of-00036.bin",
|
176 |
+
"transformer.h.21.input_layernorm.weight": "pytorch_model-00012-of-00036.bin",
|
177 |
+
"transformer.h.21.mlp.dense_4h_to_h.bias": "pytorch_model-00012-of-00036.bin",
|
178 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00036.bin",
|
179 |
+
"transformer.h.21.mlp.dense_h_to_4h.bias": "pytorch_model-00012-of-00036.bin",
|
180 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00036.bin",
|
181 |
+
"transformer.h.21.post_attention_layernorm.bias": "pytorch_model-00012-of-00036.bin",
|
182 |
+
"transformer.h.21.post_attention_layernorm.weight": "pytorch_model-00012-of-00036.bin",
|
183 |
+
"transformer.h.21.self_attention.dense.bias": "pytorch_model-00012-of-00036.bin",
|
184 |
+
"transformer.h.21.self_attention.dense.weight": "pytorch_model-00012-of-00036.bin",
|
185 |
+
"transformer.h.21.self_attention.query_key_value.bias": "pytorch_model-00012-of-00036.bin",
|
186 |
+
"transformer.h.21.self_attention.query_key_value.weight": "pytorch_model-00012-of-00036.bin",
|
187 |
+
"transformer.h.22.input_layernorm.bias": "pytorch_model-00012-of-00036.bin",
|
188 |
+
"transformer.h.22.input_layernorm.weight": "pytorch_model-00012-of-00036.bin",
|
189 |
+
"transformer.h.22.mlp.dense_4h_to_h.bias": "pytorch_model-00013-of-00036.bin",
|
190 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00036.bin",
|
191 |
+
"transformer.h.22.mlp.dense_h_to_4h.bias": "pytorch_model-00013-of-00036.bin",
|
192 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00036.bin",
|
193 |
+
"transformer.h.22.post_attention_layernorm.bias": "pytorch_model-00012-of-00036.bin",
|
194 |
+
"transformer.h.22.post_attention_layernorm.weight": "pytorch_model-00012-of-00036.bin",
|
195 |
+
"transformer.h.22.self_attention.dense.bias": "pytorch_model-00012-of-00036.bin",
|
196 |
+
"transformer.h.22.self_attention.dense.weight": "pytorch_model-00012-of-00036.bin",
|
197 |
+
"transformer.h.22.self_attention.query_key_value.bias": "pytorch_model-00012-of-00036.bin",
|
198 |
+
"transformer.h.22.self_attention.query_key_value.weight": "pytorch_model-00012-of-00036.bin",
|
199 |
+
"transformer.h.23.input_layernorm.bias": "pytorch_model-00013-of-00036.bin",
|
200 |
+
"transformer.h.23.input_layernorm.weight": "pytorch_model-00013-of-00036.bin",
|
201 |
+
"transformer.h.23.mlp.dense_4h_to_h.bias": "pytorch_model-00013-of-00036.bin",
|
202 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00036.bin",
|
203 |
+
"transformer.h.23.mlp.dense_h_to_4h.bias": "pytorch_model-00013-of-00036.bin",
|
204 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00036.bin",
|
205 |
+
"transformer.h.23.post_attention_layernorm.bias": "pytorch_model-00013-of-00036.bin",
|
206 |
+
"transformer.h.23.post_attention_layernorm.weight": "pytorch_model-00013-of-00036.bin",
|
207 |
+
"transformer.h.23.self_attention.dense.bias": "pytorch_model-00013-of-00036.bin",
|
208 |
+
"transformer.h.23.self_attention.dense.weight": "pytorch_model-00013-of-00036.bin",
|
209 |
+
"transformer.h.23.self_attention.query_key_value.bias": "pytorch_model-00013-of-00036.bin",
|
210 |
+
"transformer.h.23.self_attention.query_key_value.weight": "pytorch_model-00013-of-00036.bin",
|
211 |
+
"transformer.h.24.input_layernorm.bias": "pytorch_model-00013-of-00036.bin",
|
212 |
+
"transformer.h.24.input_layernorm.weight": "pytorch_model-00013-of-00036.bin",
|
213 |
+
"transformer.h.24.mlp.dense_4h_to_h.bias": "pytorch_model-00014-of-00036.bin",
|
214 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00036.bin",
|
215 |
+
"transformer.h.24.mlp.dense_h_to_4h.bias": "pytorch_model-00014-of-00036.bin",
|
216 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00036.bin",
|
217 |
+
"transformer.h.24.post_attention_layernorm.bias": "pytorch_model-00013-of-00036.bin",
|
218 |
+
"transformer.h.24.post_attention_layernorm.weight": "pytorch_model-00013-of-00036.bin",
|
219 |
+
"transformer.h.24.self_attention.dense.bias": "pytorch_model-00013-of-00036.bin",
|
220 |
+
"transformer.h.24.self_attention.dense.weight": "pytorch_model-00013-of-00036.bin",
|
221 |
+
"transformer.h.24.self_attention.query_key_value.bias": "pytorch_model-00013-of-00036.bin",
|
222 |
+
"transformer.h.24.self_attention.query_key_value.weight": "pytorch_model-00013-of-00036.bin",
|
223 |
+
"transformer.h.25.input_layernorm.bias": "pytorch_model-00014-of-00036.bin",
|
224 |
+
"transformer.h.25.input_layernorm.weight": "pytorch_model-00014-of-00036.bin",
|
225 |
+
"transformer.h.25.mlp.dense_4h_to_h.bias": "pytorch_model-00014-of-00036.bin",
|
226 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00036.bin",
|
227 |
+
"transformer.h.25.mlp.dense_h_to_4h.bias": "pytorch_model-00014-of-00036.bin",
|
228 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00036.bin",
|
229 |
+
"transformer.h.25.post_attention_layernorm.bias": "pytorch_model-00014-of-00036.bin",
|
230 |
+
"transformer.h.25.post_attention_layernorm.weight": "pytorch_model-00014-of-00036.bin",
|
231 |
+
"transformer.h.25.self_attention.dense.bias": "pytorch_model-00014-of-00036.bin",
|
232 |
+
"transformer.h.25.self_attention.dense.weight": "pytorch_model-00014-of-00036.bin",
|
233 |
+
"transformer.h.25.self_attention.query_key_value.bias": "pytorch_model-00014-of-00036.bin",
|
234 |
+
"transformer.h.25.self_attention.query_key_value.weight": "pytorch_model-00014-of-00036.bin",
|
235 |
+
"transformer.h.26.input_layernorm.bias": "pytorch_model-00014-of-00036.bin",
|
236 |
+
"transformer.h.26.input_layernorm.weight": "pytorch_model-00014-of-00036.bin",
|
237 |
+
"transformer.h.26.mlp.dense_4h_to_h.bias": "pytorch_model-00015-of-00036.bin",
|
238 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00036.bin",
|
239 |
+
"transformer.h.26.mlp.dense_h_to_4h.bias": "pytorch_model-00015-of-00036.bin",
|
240 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00036.bin",
|
241 |
+
"transformer.h.26.post_attention_layernorm.bias": "pytorch_model-00014-of-00036.bin",
|
242 |
+
"transformer.h.26.post_attention_layernorm.weight": "pytorch_model-00014-of-00036.bin",
|
243 |
+
"transformer.h.26.self_attention.dense.bias": "pytorch_model-00014-of-00036.bin",
|
244 |
+
"transformer.h.26.self_attention.dense.weight": "pytorch_model-00014-of-00036.bin",
|
245 |
+
"transformer.h.26.self_attention.query_key_value.bias": "pytorch_model-00014-of-00036.bin",
|
246 |
+
"transformer.h.26.self_attention.query_key_value.weight": "pytorch_model-00014-of-00036.bin",
|
247 |
+
"transformer.h.27.input_layernorm.bias": "pytorch_model-00015-of-00036.bin",
|
248 |
+
"transformer.h.27.input_layernorm.weight": "pytorch_model-00015-of-00036.bin",
|
249 |
+
"transformer.h.27.mlp.dense_4h_to_h.bias": "pytorch_model-00015-of-00036.bin",
|
250 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00036.bin",
|
251 |
+
"transformer.h.27.mlp.dense_h_to_4h.bias": "pytorch_model-00015-of-00036.bin",
|
252 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00036.bin",
|
253 |
+
"transformer.h.27.post_attention_layernorm.bias": "pytorch_model-00015-of-00036.bin",
|
254 |
+
"transformer.h.27.post_attention_layernorm.weight": "pytorch_model-00015-of-00036.bin",
|
255 |
+
"transformer.h.27.self_attention.dense.bias": "pytorch_model-00015-of-00036.bin",
|
256 |
+
"transformer.h.27.self_attention.dense.weight": "pytorch_model-00015-of-00036.bin",
|
257 |
+
"transformer.h.27.self_attention.query_key_value.bias": "pytorch_model-00015-of-00036.bin",
|
258 |
+
"transformer.h.27.self_attention.query_key_value.weight": "pytorch_model-00015-of-00036.bin",
|
259 |
+
"transformer.h.28.input_layernorm.bias": "pytorch_model-00015-of-00036.bin",
|
260 |
+
"transformer.h.28.input_layernorm.weight": "pytorch_model-00015-of-00036.bin",
|
261 |
+
"transformer.h.28.mlp.dense_4h_to_h.bias": "pytorch_model-00016-of-00036.bin",
|
262 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00036.bin",
|
263 |
+
"transformer.h.28.mlp.dense_h_to_4h.bias": "pytorch_model-00016-of-00036.bin",
|
264 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00036.bin",
|
265 |
+
"transformer.h.28.post_attention_layernorm.bias": "pytorch_model-00015-of-00036.bin",
|
266 |
+
"transformer.h.28.post_attention_layernorm.weight": "pytorch_model-00015-of-00036.bin",
|
267 |
+
"transformer.h.28.self_attention.dense.bias": "pytorch_model-00015-of-00036.bin",
|
268 |
+
"transformer.h.28.self_attention.dense.weight": "pytorch_model-00015-of-00036.bin",
|
269 |
+
"transformer.h.28.self_attention.query_key_value.bias": "pytorch_model-00015-of-00036.bin",
|
270 |
+
"transformer.h.28.self_attention.query_key_value.weight": "pytorch_model-00015-of-00036.bin",
|
271 |
+
"transformer.h.29.input_layernorm.bias": "pytorch_model-00016-of-00036.bin",
|
272 |
+
"transformer.h.29.input_layernorm.weight": "pytorch_model-00016-of-00036.bin",
|
273 |
+
"transformer.h.29.mlp.dense_4h_to_h.bias": "pytorch_model-00016-of-00036.bin",
|
274 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00036.bin",
|
275 |
+
"transformer.h.29.mlp.dense_h_to_4h.bias": "pytorch_model-00016-of-00036.bin",
|
276 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00036.bin",
|
277 |
+
"transformer.h.29.post_attention_layernorm.bias": "pytorch_model-00016-of-00036.bin",
|
278 |
+
"transformer.h.29.post_attention_layernorm.weight": "pytorch_model-00016-of-00036.bin",
|
279 |
+
"transformer.h.29.self_attention.dense.bias": "pytorch_model-00016-of-00036.bin",
|
280 |
+
"transformer.h.29.self_attention.dense.weight": "pytorch_model-00016-of-00036.bin",
|
281 |
+
"transformer.h.29.self_attention.query_key_value.bias": "pytorch_model-00016-of-00036.bin",
|
282 |
+
"transformer.h.29.self_attention.query_key_value.weight": "pytorch_model-00016-of-00036.bin",
|
283 |
+
"transformer.h.3.input_layernorm.bias": "pytorch_model-00003-of-00036.bin",
|
284 |
+
"transformer.h.3.input_layernorm.weight": "pytorch_model-00003-of-00036.bin",
|
285 |
+
"transformer.h.3.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00036.bin",
|
286 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00036.bin",
|
287 |
+
"transformer.h.3.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00036.bin",
|
288 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00036.bin",
|
289 |
+
"transformer.h.3.post_attention_layernorm.bias": "pytorch_model-00003-of-00036.bin",
|
290 |
+
"transformer.h.3.post_attention_layernorm.weight": "pytorch_model-00003-of-00036.bin",
|
291 |
+
"transformer.h.3.self_attention.dense.bias": "pytorch_model-00003-of-00036.bin",
|
292 |
+
"transformer.h.3.self_attention.dense.weight": "pytorch_model-00003-of-00036.bin",
|
293 |
+
"transformer.h.3.self_attention.query_key_value.bias": "pytorch_model-00003-of-00036.bin",
|
294 |
+
"transformer.h.3.self_attention.query_key_value.weight": "pytorch_model-00003-of-00036.bin",
|
295 |
+
"transformer.h.30.input_layernorm.bias": "pytorch_model-00016-of-00036.bin",
|
296 |
+
"transformer.h.30.input_layernorm.weight": "pytorch_model-00016-of-00036.bin",
|
297 |
+
"transformer.h.30.mlp.dense_4h_to_h.bias": "pytorch_model-00017-of-00036.bin",
|
298 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00036.bin",
|
299 |
+
"transformer.h.30.mlp.dense_h_to_4h.bias": "pytorch_model-00017-of-00036.bin",
|
300 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00036.bin",
|
301 |
+
"transformer.h.30.post_attention_layernorm.bias": "pytorch_model-00016-of-00036.bin",
|
302 |
+
"transformer.h.30.post_attention_layernorm.weight": "pytorch_model-00016-of-00036.bin",
|
303 |
+
"transformer.h.30.self_attention.dense.bias": "pytorch_model-00016-of-00036.bin",
|
304 |
+
"transformer.h.30.self_attention.dense.weight": "pytorch_model-00016-of-00036.bin",
|
305 |
+
"transformer.h.30.self_attention.query_key_value.bias": "pytorch_model-00016-of-00036.bin",
|
306 |
+
"transformer.h.30.self_attention.query_key_value.weight": "pytorch_model-00016-of-00036.bin",
|
307 |
+
"transformer.h.31.input_layernorm.bias": "pytorch_model-00017-of-00036.bin",
|
308 |
+
"transformer.h.31.input_layernorm.weight": "pytorch_model-00017-of-00036.bin",
|
309 |
+
"transformer.h.31.mlp.dense_4h_to_h.bias": "pytorch_model-00017-of-00036.bin",
|
310 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00036.bin",
|
311 |
+
"transformer.h.31.mlp.dense_h_to_4h.bias": "pytorch_model-00017-of-00036.bin",
|
312 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00036.bin",
|
313 |
+
"transformer.h.31.post_attention_layernorm.bias": "pytorch_model-00017-of-00036.bin",
|
314 |
+
"transformer.h.31.post_attention_layernorm.weight": "pytorch_model-00017-of-00036.bin",
|
315 |
+
"transformer.h.31.self_attention.dense.bias": "pytorch_model-00017-of-00036.bin",
|
316 |
+
"transformer.h.31.self_attention.dense.weight": "pytorch_model-00017-of-00036.bin",
|
317 |
+
"transformer.h.31.self_attention.query_key_value.bias": "pytorch_model-00017-of-00036.bin",
|
318 |
+
"transformer.h.31.self_attention.query_key_value.weight": "pytorch_model-00017-of-00036.bin",
|
319 |
+
"transformer.h.32.input_layernorm.bias": "pytorch_model-00017-of-00036.bin",
|
320 |
+
"transformer.h.32.input_layernorm.weight": "pytorch_model-00017-of-00036.bin",
|
321 |
+
"transformer.h.32.mlp.dense_4h_to_h.bias": "pytorch_model-00018-of-00036.bin",
|
322 |
+
"transformer.h.32.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00036.bin",
|
323 |
+
"transformer.h.32.mlp.dense_h_to_4h.bias": "pytorch_model-00018-of-00036.bin",
|
324 |
+
"transformer.h.32.mlp.dense_h_to_4h.weight": "pytorch_model-00018-of-00036.bin",
|
325 |
+
"transformer.h.32.post_attention_layernorm.bias": "pytorch_model-00017-of-00036.bin",
|
326 |
+
"transformer.h.32.post_attention_layernorm.weight": "pytorch_model-00017-of-00036.bin",
|
327 |
+
"transformer.h.32.self_attention.dense.bias": "pytorch_model-00017-of-00036.bin",
|
328 |
+
"transformer.h.32.self_attention.dense.weight": "pytorch_model-00017-of-00036.bin",
|
329 |
+
"transformer.h.32.self_attention.query_key_value.bias": "pytorch_model-00017-of-00036.bin",
|
330 |
+
"transformer.h.32.self_attention.query_key_value.weight": "pytorch_model-00017-of-00036.bin",
|
331 |
+
"transformer.h.33.input_layernorm.bias": "pytorch_model-00018-of-00036.bin",
|
332 |
+
"transformer.h.33.input_layernorm.weight": "pytorch_model-00018-of-00036.bin",
|
333 |
+
"transformer.h.33.mlp.dense_4h_to_h.bias": "pytorch_model-00018-of-00036.bin",
|
334 |
+
"transformer.h.33.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00036.bin",
|
335 |
+
"transformer.h.33.mlp.dense_h_to_4h.bias": "pytorch_model-00018-of-00036.bin",
|
336 |
+
"transformer.h.33.mlp.dense_h_to_4h.weight": "pytorch_model-00018-of-00036.bin",
|
337 |
+
"transformer.h.33.post_attention_layernorm.bias": "pytorch_model-00018-of-00036.bin",
|
338 |
+
"transformer.h.33.post_attention_layernorm.weight": "pytorch_model-00018-of-00036.bin",
|
339 |
+
"transformer.h.33.self_attention.dense.bias": "pytorch_model-00018-of-00036.bin",
|
340 |
+
"transformer.h.33.self_attention.dense.weight": "pytorch_model-00018-of-00036.bin",
|
341 |
+
"transformer.h.33.self_attention.query_key_value.bias": "pytorch_model-00018-of-00036.bin",
|
342 |
+
"transformer.h.33.self_attention.query_key_value.weight": "pytorch_model-00018-of-00036.bin",
|
343 |
+
"transformer.h.34.input_layernorm.bias": "pytorch_model-00018-of-00036.bin",
|
344 |
+
"transformer.h.34.input_layernorm.weight": "pytorch_model-00018-of-00036.bin",
|
345 |
+
"transformer.h.34.mlp.dense_4h_to_h.bias": "pytorch_model-00019-of-00036.bin",
|
346 |
+
"transformer.h.34.mlp.dense_4h_to_h.weight": "pytorch_model-00019-of-00036.bin",
|
347 |
+
"transformer.h.34.mlp.dense_h_to_4h.bias": "pytorch_model-00019-of-00036.bin",
|
348 |
+
"transformer.h.34.mlp.dense_h_to_4h.weight": "pytorch_model-00019-of-00036.bin",
|
349 |
+
"transformer.h.34.post_attention_layernorm.bias": "pytorch_model-00018-of-00036.bin",
|
350 |
+
"transformer.h.34.post_attention_layernorm.weight": "pytorch_model-00018-of-00036.bin",
|
351 |
+
"transformer.h.34.self_attention.dense.bias": "pytorch_model-00018-of-00036.bin",
|
352 |
+
"transformer.h.34.self_attention.dense.weight": "pytorch_model-00018-of-00036.bin",
|
353 |
+
"transformer.h.34.self_attention.query_key_value.bias": "pytorch_model-00018-of-00036.bin",
|
354 |
+
"transformer.h.34.self_attention.query_key_value.weight": "pytorch_model-00018-of-00036.bin",
|
355 |
+
"transformer.h.35.input_layernorm.bias": "pytorch_model-00019-of-00036.bin",
|
356 |
+
"transformer.h.35.input_layernorm.weight": "pytorch_model-00019-of-00036.bin",
|
357 |
+
"transformer.h.35.mlp.dense_4h_to_h.bias": "pytorch_model-00019-of-00036.bin",
|
358 |
+
"transformer.h.35.mlp.dense_4h_to_h.weight": "pytorch_model-00019-of-00036.bin",
|
359 |
+
"transformer.h.35.mlp.dense_h_to_4h.bias": "pytorch_model-00019-of-00036.bin",
|
360 |
+
"transformer.h.35.mlp.dense_h_to_4h.weight": "pytorch_model-00019-of-00036.bin",
|
361 |
+
"transformer.h.35.post_attention_layernorm.bias": "pytorch_model-00019-of-00036.bin",
|
362 |
+
"transformer.h.35.post_attention_layernorm.weight": "pytorch_model-00019-of-00036.bin",
|
363 |
+
"transformer.h.35.self_attention.dense.bias": "pytorch_model-00019-of-00036.bin",
|
364 |
+
"transformer.h.35.self_attention.dense.weight": "pytorch_model-00019-of-00036.bin",
|
365 |
+
"transformer.h.35.self_attention.query_key_value.bias": "pytorch_model-00019-of-00036.bin",
|
366 |
+
"transformer.h.35.self_attention.query_key_value.weight": "pytorch_model-00019-of-00036.bin",
|
367 |
+
"transformer.h.36.input_layernorm.bias": "pytorch_model-00019-of-00036.bin",
|
368 |
+
"transformer.h.36.input_layernorm.weight": "pytorch_model-00019-of-00036.bin",
|
369 |
+
"transformer.h.36.mlp.dense_4h_to_h.bias": "pytorch_model-00020-of-00036.bin",
|
370 |
+
"transformer.h.36.mlp.dense_4h_to_h.weight": "pytorch_model-00020-of-00036.bin",
|
371 |
+
"transformer.h.36.mlp.dense_h_to_4h.bias": "pytorch_model-00020-of-00036.bin",
|
372 |
+
"transformer.h.36.mlp.dense_h_to_4h.weight": "pytorch_model-00020-of-00036.bin",
|
373 |
+
"transformer.h.36.post_attention_layernorm.bias": "pytorch_model-00019-of-00036.bin",
|
374 |
+
"transformer.h.36.post_attention_layernorm.weight": "pytorch_model-00019-of-00036.bin",
|
375 |
+
"transformer.h.36.self_attention.dense.bias": "pytorch_model-00019-of-00036.bin",
|
376 |
+
"transformer.h.36.self_attention.dense.weight": "pytorch_model-00019-of-00036.bin",
|
377 |
+
"transformer.h.36.self_attention.query_key_value.bias": "pytorch_model-00019-of-00036.bin",
|
378 |
+
"transformer.h.36.self_attention.query_key_value.weight": "pytorch_model-00019-of-00036.bin",
|
379 |
+
"transformer.h.37.input_layernorm.bias": "pytorch_model-00020-of-00036.bin",
|
380 |
+
"transformer.h.37.input_layernorm.weight": "pytorch_model-00020-of-00036.bin",
|
381 |
+
"transformer.h.37.mlp.dense_4h_to_h.bias": "pytorch_model-00020-of-00036.bin",
|
382 |
+
"transformer.h.37.mlp.dense_4h_to_h.weight": "pytorch_model-00020-of-00036.bin",
|
383 |
+
"transformer.h.37.mlp.dense_h_to_4h.bias": "pytorch_model-00020-of-00036.bin",
|
384 |
+
"transformer.h.37.mlp.dense_h_to_4h.weight": "pytorch_model-00020-of-00036.bin",
|
385 |
+
"transformer.h.37.post_attention_layernorm.bias": "pytorch_model-00020-of-00036.bin",
|
386 |
+
"transformer.h.37.post_attention_layernorm.weight": "pytorch_model-00020-of-00036.bin",
|
387 |
+
"transformer.h.37.self_attention.dense.bias": "pytorch_model-00020-of-00036.bin",
|
388 |
+
"transformer.h.37.self_attention.dense.weight": "pytorch_model-00020-of-00036.bin",
|
389 |
+
"transformer.h.37.self_attention.query_key_value.bias": "pytorch_model-00020-of-00036.bin",
|
390 |
+
"transformer.h.37.self_attention.query_key_value.weight": "pytorch_model-00020-of-00036.bin",
|
391 |
+
"transformer.h.38.input_layernorm.bias": "pytorch_model-00020-of-00036.bin",
|
392 |
+
"transformer.h.38.input_layernorm.weight": "pytorch_model-00020-of-00036.bin",
|
393 |
+
"transformer.h.38.mlp.dense_4h_to_h.bias": "pytorch_model-00021-of-00036.bin",
|
394 |
+
"transformer.h.38.mlp.dense_4h_to_h.weight": "pytorch_model-00021-of-00036.bin",
|
395 |
+
"transformer.h.38.mlp.dense_h_to_4h.bias": "pytorch_model-00021-of-00036.bin",
|
396 |
+
"transformer.h.38.mlp.dense_h_to_4h.weight": "pytorch_model-00021-of-00036.bin",
|
397 |
+
"transformer.h.38.post_attention_layernorm.bias": "pytorch_model-00020-of-00036.bin",
|
398 |
+
"transformer.h.38.post_attention_layernorm.weight": "pytorch_model-00020-of-00036.bin",
|
399 |
+
"transformer.h.38.self_attention.dense.bias": "pytorch_model-00020-of-00036.bin",
|
400 |
+
"transformer.h.38.self_attention.dense.weight": "pytorch_model-00020-of-00036.bin",
|
401 |
+
"transformer.h.38.self_attention.query_key_value.bias": "pytorch_model-00020-of-00036.bin",
|
402 |
+
"transformer.h.38.self_attention.query_key_value.weight": "pytorch_model-00020-of-00036.bin",
|
403 |
+
"transformer.h.39.input_layernorm.bias": "pytorch_model-00021-of-00036.bin",
|
404 |
+
"transformer.h.39.input_layernorm.weight": "pytorch_model-00021-of-00036.bin",
|
405 |
+
"transformer.h.39.mlp.dense_4h_to_h.bias": "pytorch_model-00021-of-00036.bin",
|
406 |
+
"transformer.h.39.mlp.dense_4h_to_h.weight": "pytorch_model-00021-of-00036.bin",
|
407 |
+
"transformer.h.39.mlp.dense_h_to_4h.bias": "pytorch_model-00021-of-00036.bin",
|
408 |
+
"transformer.h.39.mlp.dense_h_to_4h.weight": "pytorch_model-00021-of-00036.bin",
|
409 |
+
"transformer.h.39.post_attention_layernorm.bias": "pytorch_model-00021-of-00036.bin",
|
410 |
+
"transformer.h.39.post_attention_layernorm.weight": "pytorch_model-00021-of-00036.bin",
|
411 |
+
"transformer.h.39.self_attention.dense.bias": "pytorch_model-00021-of-00036.bin",
|
412 |
+
"transformer.h.39.self_attention.dense.weight": "pytorch_model-00021-of-00036.bin",
|
413 |
+
"transformer.h.39.self_attention.query_key_value.bias": "pytorch_model-00021-of-00036.bin",
|
414 |
+
"transformer.h.39.self_attention.query_key_value.weight": "pytorch_model-00021-of-00036.bin",
|
415 |
+
"transformer.h.4.input_layernorm.bias": "pytorch_model-00003-of-00036.bin",
|
416 |
+
"transformer.h.4.input_layernorm.weight": "pytorch_model-00003-of-00036.bin",
|
417 |
+
"transformer.h.4.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00036.bin",
|
418 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00036.bin",
|
419 |
+
"transformer.h.4.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00036.bin",
|
420 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00036.bin",
|
421 |
+
"transformer.h.4.post_attention_layernorm.bias": "pytorch_model-00003-of-00036.bin",
|
422 |
+
"transformer.h.4.post_attention_layernorm.weight": "pytorch_model-00003-of-00036.bin",
|
423 |
+
"transformer.h.4.self_attention.dense.bias": "pytorch_model-00003-of-00036.bin",
|
424 |
+
"transformer.h.4.self_attention.dense.weight": "pytorch_model-00003-of-00036.bin",
|
425 |
+
"transformer.h.4.self_attention.query_key_value.bias": "pytorch_model-00003-of-00036.bin",
|
426 |
+
"transformer.h.4.self_attention.query_key_value.weight": "pytorch_model-00003-of-00036.bin",
|
427 |
+
"transformer.h.40.input_layernorm.bias": "pytorch_model-00021-of-00036.bin",
|
428 |
+
"transformer.h.40.input_layernorm.weight": "pytorch_model-00021-of-00036.bin",
|
429 |
+
"transformer.h.40.mlp.dense_4h_to_h.bias": "pytorch_model-00022-of-00036.bin",
|
430 |
+
"transformer.h.40.mlp.dense_4h_to_h.weight": "pytorch_model-00022-of-00036.bin",
|
431 |
+
"transformer.h.40.mlp.dense_h_to_4h.bias": "pytorch_model-00022-of-00036.bin",
|
432 |
+
"transformer.h.40.mlp.dense_h_to_4h.weight": "pytorch_model-00022-of-00036.bin",
|
433 |
+
"transformer.h.40.post_attention_layernorm.bias": "pytorch_model-00021-of-00036.bin",
|
434 |
+
"transformer.h.40.post_attention_layernorm.weight": "pytorch_model-00021-of-00036.bin",
|
435 |
+
"transformer.h.40.self_attention.dense.bias": "pytorch_model-00021-of-00036.bin",
|
436 |
+
"transformer.h.40.self_attention.dense.weight": "pytorch_model-00021-of-00036.bin",
|
437 |
+
"transformer.h.40.self_attention.query_key_value.bias": "pytorch_model-00021-of-00036.bin",
|
438 |
+
"transformer.h.40.self_attention.query_key_value.weight": "pytorch_model-00021-of-00036.bin",
|
439 |
+
"transformer.h.41.input_layernorm.bias": "pytorch_model-00022-of-00036.bin",
|
440 |
+
"transformer.h.41.input_layernorm.weight": "pytorch_model-00022-of-00036.bin",
|
441 |
+
"transformer.h.41.mlp.dense_4h_to_h.bias": "pytorch_model-00022-of-00036.bin",
|
442 |
+
"transformer.h.41.mlp.dense_4h_to_h.weight": "pytorch_model-00022-of-00036.bin",
|
443 |
+
"transformer.h.41.mlp.dense_h_to_4h.bias": "pytorch_model-00022-of-00036.bin",
|
444 |
+
"transformer.h.41.mlp.dense_h_to_4h.weight": "pytorch_model-00022-of-00036.bin",
|
445 |
+
"transformer.h.41.post_attention_layernorm.bias": "pytorch_model-00022-of-00036.bin",
|
446 |
+
"transformer.h.41.post_attention_layernorm.weight": "pytorch_model-00022-of-00036.bin",
|
447 |
+
"transformer.h.41.self_attention.dense.bias": "pytorch_model-00022-of-00036.bin",
|
448 |
+
"transformer.h.41.self_attention.dense.weight": "pytorch_model-00022-of-00036.bin",
|
449 |
+
"transformer.h.41.self_attention.query_key_value.bias": "pytorch_model-00022-of-00036.bin",
|
450 |
+
"transformer.h.41.self_attention.query_key_value.weight": "pytorch_model-00022-of-00036.bin",
|
451 |
+
"transformer.h.42.input_layernorm.bias": "pytorch_model-00022-of-00036.bin",
|
452 |
+
"transformer.h.42.input_layernorm.weight": "pytorch_model-00022-of-00036.bin",
|
453 |
+
"transformer.h.42.mlp.dense_4h_to_h.bias": "pytorch_model-00023-of-00036.bin",
|
454 |
+
"transformer.h.42.mlp.dense_4h_to_h.weight": "pytorch_model-00023-of-00036.bin",
|
455 |
+
"transformer.h.42.mlp.dense_h_to_4h.bias": "pytorch_model-00023-of-00036.bin",
|
456 |
+
"transformer.h.42.mlp.dense_h_to_4h.weight": "pytorch_model-00023-of-00036.bin",
|
457 |
+
"transformer.h.42.post_attention_layernorm.bias": "pytorch_model-00022-of-00036.bin",
|
458 |
+
"transformer.h.42.post_attention_layernorm.weight": "pytorch_model-00022-of-00036.bin",
|
459 |
+
"transformer.h.42.self_attention.dense.bias": "pytorch_model-00022-of-00036.bin",
|
460 |
+
"transformer.h.42.self_attention.dense.weight": "pytorch_model-00022-of-00036.bin",
|
461 |
+
"transformer.h.42.self_attention.query_key_value.bias": "pytorch_model-00022-of-00036.bin",
|
462 |
+
"transformer.h.42.self_attention.query_key_value.weight": "pytorch_model-00022-of-00036.bin",
|
463 |
+
"transformer.h.43.input_layernorm.bias": "pytorch_model-00023-of-00036.bin",
|
464 |
+
"transformer.h.43.input_layernorm.weight": "pytorch_model-00023-of-00036.bin",
|
465 |
+
"transformer.h.43.mlp.dense_4h_to_h.bias": "pytorch_model-00023-of-00036.bin",
|
466 |
+
"transformer.h.43.mlp.dense_4h_to_h.weight": "pytorch_model-00023-of-00036.bin",
|
467 |
+
"transformer.h.43.mlp.dense_h_to_4h.bias": "pytorch_model-00023-of-00036.bin",
|
468 |
+
"transformer.h.43.mlp.dense_h_to_4h.weight": "pytorch_model-00023-of-00036.bin",
|
469 |
+
"transformer.h.43.post_attention_layernorm.bias": "pytorch_model-00023-of-00036.bin",
|
470 |
+
"transformer.h.43.post_attention_layernorm.weight": "pytorch_model-00023-of-00036.bin",
|
471 |
+
"transformer.h.43.self_attention.dense.bias": "pytorch_model-00023-of-00036.bin",
|
472 |
+
"transformer.h.43.self_attention.dense.weight": "pytorch_model-00023-of-00036.bin",
|
473 |
+
"transformer.h.43.self_attention.query_key_value.bias": "pytorch_model-00023-of-00036.bin",
|
474 |
+
"transformer.h.43.self_attention.query_key_value.weight": "pytorch_model-00023-of-00036.bin",
|
475 |
+
"transformer.h.44.input_layernorm.bias": "pytorch_model-00023-of-00036.bin",
|
476 |
+
"transformer.h.44.input_layernorm.weight": "pytorch_model-00023-of-00036.bin",
|
477 |
+
"transformer.h.44.mlp.dense_4h_to_h.bias": "pytorch_model-00024-of-00036.bin",
|
478 |
+
"transformer.h.44.mlp.dense_4h_to_h.weight": "pytorch_model-00024-of-00036.bin",
|
479 |
+
"transformer.h.44.mlp.dense_h_to_4h.bias": "pytorch_model-00024-of-00036.bin",
|
480 |
+
"transformer.h.44.mlp.dense_h_to_4h.weight": "pytorch_model-00024-of-00036.bin",
|
481 |
+
"transformer.h.44.post_attention_layernorm.bias": "pytorch_model-00023-of-00036.bin",
|
482 |
+
"transformer.h.44.post_attention_layernorm.weight": "pytorch_model-00023-of-00036.bin",
|
483 |
+
"transformer.h.44.self_attention.dense.bias": "pytorch_model-00023-of-00036.bin",
|
484 |
+
"transformer.h.44.self_attention.dense.weight": "pytorch_model-00023-of-00036.bin",
|
485 |
+
"transformer.h.44.self_attention.query_key_value.bias": "pytorch_model-00023-of-00036.bin",
|
486 |
+
"transformer.h.44.self_attention.query_key_value.weight": "pytorch_model-00023-of-00036.bin",
|
487 |
+
"transformer.h.45.input_layernorm.bias": "pytorch_model-00024-of-00036.bin",
|
488 |
+
"transformer.h.45.input_layernorm.weight": "pytorch_model-00024-of-00036.bin",
|
489 |
+
"transformer.h.45.mlp.dense_4h_to_h.bias": "pytorch_model-00024-of-00036.bin",
|
490 |
+
"transformer.h.45.mlp.dense_4h_to_h.weight": "pytorch_model-00024-of-00036.bin",
|
491 |
+
"transformer.h.45.mlp.dense_h_to_4h.bias": "pytorch_model-00024-of-00036.bin",
|
492 |
+
"transformer.h.45.mlp.dense_h_to_4h.weight": "pytorch_model-00024-of-00036.bin",
|
493 |
+
"transformer.h.45.post_attention_layernorm.bias": "pytorch_model-00024-of-00036.bin",
|
494 |
+
"transformer.h.45.post_attention_layernorm.weight": "pytorch_model-00024-of-00036.bin",
|
495 |
+
"transformer.h.45.self_attention.dense.bias": "pytorch_model-00024-of-00036.bin",
|
496 |
+
"transformer.h.45.self_attention.dense.weight": "pytorch_model-00024-of-00036.bin",
|
497 |
+
"transformer.h.45.self_attention.query_key_value.bias": "pytorch_model-00024-of-00036.bin",
|
498 |
+
"transformer.h.45.self_attention.query_key_value.weight": "pytorch_model-00024-of-00036.bin",
|
499 |
+
"transformer.h.46.input_layernorm.bias": "pytorch_model-00024-of-00036.bin",
|
500 |
+
"transformer.h.46.input_layernorm.weight": "pytorch_model-00024-of-00036.bin",
|
501 |
+
"transformer.h.46.mlp.dense_4h_to_h.bias": "pytorch_model-00025-of-00036.bin",
|
502 |
+
"transformer.h.46.mlp.dense_4h_to_h.weight": "pytorch_model-00025-of-00036.bin",
|
503 |
+
"transformer.h.46.mlp.dense_h_to_4h.bias": "pytorch_model-00025-of-00036.bin",
|
504 |
+
"transformer.h.46.mlp.dense_h_to_4h.weight": "pytorch_model-00025-of-00036.bin",
|
505 |
+
"transformer.h.46.post_attention_layernorm.bias": "pytorch_model-00024-of-00036.bin",
|
506 |
+
"transformer.h.46.post_attention_layernorm.weight": "pytorch_model-00024-of-00036.bin",
|
507 |
+
"transformer.h.46.self_attention.dense.bias": "pytorch_model-00024-of-00036.bin",
|
508 |
+
"transformer.h.46.self_attention.dense.weight": "pytorch_model-00024-of-00036.bin",
|
509 |
+
"transformer.h.46.self_attention.query_key_value.bias": "pytorch_model-00024-of-00036.bin",
|
510 |
+
"transformer.h.46.self_attention.query_key_value.weight": "pytorch_model-00024-of-00036.bin",
|
511 |
+
"transformer.h.47.input_layernorm.bias": "pytorch_model-00025-of-00036.bin",
|
512 |
+
"transformer.h.47.input_layernorm.weight": "pytorch_model-00025-of-00036.bin",
|
513 |
+
"transformer.h.47.mlp.dense_4h_to_h.bias": "pytorch_model-00025-of-00036.bin",
|
514 |
+
"transformer.h.47.mlp.dense_4h_to_h.weight": "pytorch_model-00025-of-00036.bin",
|
515 |
+
"transformer.h.47.mlp.dense_h_to_4h.bias": "pytorch_model-00025-of-00036.bin",
|
516 |
+
"transformer.h.47.mlp.dense_h_to_4h.weight": "pytorch_model-00025-of-00036.bin",
|
517 |
+
"transformer.h.47.post_attention_layernorm.bias": "pytorch_model-00025-of-00036.bin",
|
518 |
+
"transformer.h.47.post_attention_layernorm.weight": "pytorch_model-00025-of-00036.bin",
|
519 |
+
"transformer.h.47.self_attention.dense.bias": "pytorch_model-00025-of-00036.bin",
|
520 |
+
"transformer.h.47.self_attention.dense.weight": "pytorch_model-00025-of-00036.bin",
|
521 |
+
"transformer.h.47.self_attention.query_key_value.bias": "pytorch_model-00025-of-00036.bin",
|
522 |
+
"transformer.h.47.self_attention.query_key_value.weight": "pytorch_model-00025-of-00036.bin",
|
523 |
+
"transformer.h.48.input_layernorm.bias": "pytorch_model-00025-of-00036.bin",
|
524 |
+
"transformer.h.48.input_layernorm.weight": "pytorch_model-00025-of-00036.bin",
|
525 |
+
"transformer.h.48.mlp.dense_4h_to_h.bias": "pytorch_model-00026-of-00036.bin",
|
526 |
+
"transformer.h.48.mlp.dense_4h_to_h.weight": "pytorch_model-00026-of-00036.bin",
|
527 |
+
"transformer.h.48.mlp.dense_h_to_4h.bias": "pytorch_model-00026-of-00036.bin",
|
528 |
+
"transformer.h.48.mlp.dense_h_to_4h.weight": "pytorch_model-00026-of-00036.bin",
|
529 |
+
"transformer.h.48.post_attention_layernorm.bias": "pytorch_model-00025-of-00036.bin",
|
530 |
+
"transformer.h.48.post_attention_layernorm.weight": "pytorch_model-00025-of-00036.bin",
|
531 |
+
"transformer.h.48.self_attention.dense.bias": "pytorch_model-00025-of-00036.bin",
|
532 |
+
"transformer.h.48.self_attention.dense.weight": "pytorch_model-00025-of-00036.bin",
|
533 |
+
"transformer.h.48.self_attention.query_key_value.bias": "pytorch_model-00025-of-00036.bin",
|
534 |
+
"transformer.h.48.self_attention.query_key_value.weight": "pytorch_model-00025-of-00036.bin",
|
535 |
+
"transformer.h.49.input_layernorm.bias": "pytorch_model-00026-of-00036.bin",
|
536 |
+
"transformer.h.49.input_layernorm.weight": "pytorch_model-00026-of-00036.bin",
|
537 |
+
"transformer.h.49.mlp.dense_4h_to_h.bias": "pytorch_model-00026-of-00036.bin",
|
538 |
+
"transformer.h.49.mlp.dense_4h_to_h.weight": "pytorch_model-00026-of-00036.bin",
|
539 |
+
"transformer.h.49.mlp.dense_h_to_4h.bias": "pytorch_model-00026-of-00036.bin",
|
540 |
+
"transformer.h.49.mlp.dense_h_to_4h.weight": "pytorch_model-00026-of-00036.bin",
|
541 |
+
"transformer.h.49.post_attention_layernorm.bias": "pytorch_model-00026-of-00036.bin",
|
542 |
+
"transformer.h.49.post_attention_layernorm.weight": "pytorch_model-00026-of-00036.bin",
|
543 |
+
"transformer.h.49.self_attention.dense.bias": "pytorch_model-00026-of-00036.bin",
|
544 |
+
"transformer.h.49.self_attention.dense.weight": "pytorch_model-00026-of-00036.bin",
|
545 |
+
"transformer.h.49.self_attention.query_key_value.bias": "pytorch_model-00026-of-00036.bin",
|
546 |
+
"transformer.h.49.self_attention.query_key_value.weight": "pytorch_model-00026-of-00036.bin",
|
547 |
+
"transformer.h.5.input_layernorm.bias": "pytorch_model-00004-of-00036.bin",
|
548 |
+
"transformer.h.5.input_layernorm.weight": "pytorch_model-00004-of-00036.bin",
|
549 |
+
"transformer.h.5.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00036.bin",
|
550 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00036.bin",
|
551 |
+
"transformer.h.5.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00036.bin",
|
552 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00036.bin",
|
553 |
+
"transformer.h.5.post_attention_layernorm.bias": "pytorch_model-00004-of-00036.bin",
|
554 |
+
"transformer.h.5.post_attention_layernorm.weight": "pytorch_model-00004-of-00036.bin",
|
555 |
+
"transformer.h.5.self_attention.dense.bias": "pytorch_model-00004-of-00036.bin",
|
556 |
+
"transformer.h.5.self_attention.dense.weight": "pytorch_model-00004-of-00036.bin",
|
557 |
+
"transformer.h.5.self_attention.query_key_value.bias": "pytorch_model-00004-of-00036.bin",
|
558 |
+
"transformer.h.5.self_attention.query_key_value.weight": "pytorch_model-00004-of-00036.bin",
|
559 |
+
"transformer.h.50.input_layernorm.bias": "pytorch_model-00026-of-00036.bin",
|
560 |
+
"transformer.h.50.input_layernorm.weight": "pytorch_model-00026-of-00036.bin",
|
561 |
+
"transformer.h.50.mlp.dense_4h_to_h.bias": "pytorch_model-00027-of-00036.bin",
|
562 |
+
"transformer.h.50.mlp.dense_4h_to_h.weight": "pytorch_model-00027-of-00036.bin",
|
563 |
+
"transformer.h.50.mlp.dense_h_to_4h.bias": "pytorch_model-00027-of-00036.bin",
|
564 |
+
"transformer.h.50.mlp.dense_h_to_4h.weight": "pytorch_model-00027-of-00036.bin",
|
565 |
+
"transformer.h.50.post_attention_layernorm.bias": "pytorch_model-00026-of-00036.bin",
|
566 |
+
"transformer.h.50.post_attention_layernorm.weight": "pytorch_model-00026-of-00036.bin",
|
567 |
+
"transformer.h.50.self_attention.dense.bias": "pytorch_model-00026-of-00036.bin",
|
568 |
+
"transformer.h.50.self_attention.dense.weight": "pytorch_model-00026-of-00036.bin",
|
569 |
+
"transformer.h.50.self_attention.query_key_value.bias": "pytorch_model-00026-of-00036.bin",
|
570 |
+
"transformer.h.50.self_attention.query_key_value.weight": "pytorch_model-00026-of-00036.bin",
|
571 |
+
"transformer.h.51.input_layernorm.bias": "pytorch_model-00027-of-00036.bin",
|
572 |
+
"transformer.h.51.input_layernorm.weight": "pytorch_model-00027-of-00036.bin",
|
573 |
+
"transformer.h.51.mlp.dense_4h_to_h.bias": "pytorch_model-00027-of-00036.bin",
|
574 |
+
"transformer.h.51.mlp.dense_4h_to_h.weight": "pytorch_model-00027-of-00036.bin",
|
575 |
+
"transformer.h.51.mlp.dense_h_to_4h.bias": "pytorch_model-00027-of-00036.bin",
|
576 |
+
"transformer.h.51.mlp.dense_h_to_4h.weight": "pytorch_model-00027-of-00036.bin",
|
577 |
+
"transformer.h.51.post_attention_layernorm.bias": "pytorch_model-00027-of-00036.bin",
|
578 |
+
"transformer.h.51.post_attention_layernorm.weight": "pytorch_model-00027-of-00036.bin",
|
579 |
+
"transformer.h.51.self_attention.dense.bias": "pytorch_model-00027-of-00036.bin",
|
580 |
+
"transformer.h.51.self_attention.dense.weight": "pytorch_model-00027-of-00036.bin",
|
581 |
+
"transformer.h.51.self_attention.query_key_value.bias": "pytorch_model-00027-of-00036.bin",
|
582 |
+
"transformer.h.51.self_attention.query_key_value.weight": "pytorch_model-00027-of-00036.bin",
|
583 |
+
"transformer.h.52.input_layernorm.bias": "pytorch_model-00027-of-00036.bin",
|
584 |
+
"transformer.h.52.input_layernorm.weight": "pytorch_model-00027-of-00036.bin",
|
585 |
+
"transformer.h.52.mlp.dense_4h_to_h.bias": "pytorch_model-00028-of-00036.bin",
|
586 |
+
"transformer.h.52.mlp.dense_4h_to_h.weight": "pytorch_model-00028-of-00036.bin",
|
587 |
+
"transformer.h.52.mlp.dense_h_to_4h.bias": "pytorch_model-00028-of-00036.bin",
|
588 |
+
"transformer.h.52.mlp.dense_h_to_4h.weight": "pytorch_model-00028-of-00036.bin",
|
589 |
+
"transformer.h.52.post_attention_layernorm.bias": "pytorch_model-00027-of-00036.bin",
|
590 |
+
"transformer.h.52.post_attention_layernorm.weight": "pytorch_model-00027-of-00036.bin",
|
591 |
+
"transformer.h.52.self_attention.dense.bias": "pytorch_model-00027-of-00036.bin",
|
592 |
+
"transformer.h.52.self_attention.dense.weight": "pytorch_model-00027-of-00036.bin",
|
593 |
+
"transformer.h.52.self_attention.query_key_value.bias": "pytorch_model-00027-of-00036.bin",
|
594 |
+
"transformer.h.52.self_attention.query_key_value.weight": "pytorch_model-00027-of-00036.bin",
|
595 |
+
"transformer.h.53.input_layernorm.bias": "pytorch_model-00028-of-00036.bin",
|
596 |
+
"transformer.h.53.input_layernorm.weight": "pytorch_model-00028-of-00036.bin",
|
597 |
+
"transformer.h.53.mlp.dense_4h_to_h.bias": "pytorch_model-00028-of-00036.bin",
|
598 |
+
"transformer.h.53.mlp.dense_4h_to_h.weight": "pytorch_model-00028-of-00036.bin",
|
599 |
+
"transformer.h.53.mlp.dense_h_to_4h.bias": "pytorch_model-00028-of-00036.bin",
|
600 |
+
"transformer.h.53.mlp.dense_h_to_4h.weight": "pytorch_model-00028-of-00036.bin",
|
601 |
+
"transformer.h.53.post_attention_layernorm.bias": "pytorch_model-00028-of-00036.bin",
|
602 |
+
"transformer.h.53.post_attention_layernorm.weight": "pytorch_model-00028-of-00036.bin",
|
603 |
+
"transformer.h.53.self_attention.dense.bias": "pytorch_model-00028-of-00036.bin",
|
604 |
+
"transformer.h.53.self_attention.dense.weight": "pytorch_model-00028-of-00036.bin",
|
605 |
+
"transformer.h.53.self_attention.query_key_value.bias": "pytorch_model-00028-of-00036.bin",
|
606 |
+
"transformer.h.53.self_attention.query_key_value.weight": "pytorch_model-00028-of-00036.bin",
|
607 |
+
"transformer.h.54.input_layernorm.bias": "pytorch_model-00028-of-00036.bin",
|
608 |
+
"transformer.h.54.input_layernorm.weight": "pytorch_model-00028-of-00036.bin",
|
609 |
+
"transformer.h.54.mlp.dense_4h_to_h.bias": "pytorch_model-00029-of-00036.bin",
|
610 |
+
"transformer.h.54.mlp.dense_4h_to_h.weight": "pytorch_model-00029-of-00036.bin",
|
611 |
+
"transformer.h.54.mlp.dense_h_to_4h.bias": "pytorch_model-00029-of-00036.bin",
|
612 |
+
"transformer.h.54.mlp.dense_h_to_4h.weight": "pytorch_model-00029-of-00036.bin",
|
613 |
+
"transformer.h.54.post_attention_layernorm.bias": "pytorch_model-00028-of-00036.bin",
|
614 |
+
"transformer.h.54.post_attention_layernorm.weight": "pytorch_model-00028-of-00036.bin",
|
615 |
+
"transformer.h.54.self_attention.dense.bias": "pytorch_model-00028-of-00036.bin",
|
616 |
+
"transformer.h.54.self_attention.dense.weight": "pytorch_model-00028-of-00036.bin",
|
617 |
+
"transformer.h.54.self_attention.query_key_value.bias": "pytorch_model-00028-of-00036.bin",
|
618 |
+
"transformer.h.54.self_attention.query_key_value.weight": "pytorch_model-00028-of-00036.bin",
|
619 |
+
"transformer.h.55.input_layernorm.bias": "pytorch_model-00029-of-00036.bin",
|
620 |
+
"transformer.h.55.input_layernorm.weight": "pytorch_model-00029-of-00036.bin",
|
621 |
+
"transformer.h.55.mlp.dense_4h_to_h.bias": "pytorch_model-00029-of-00036.bin",
|
622 |
+
"transformer.h.55.mlp.dense_4h_to_h.weight": "pytorch_model-00029-of-00036.bin",
|
623 |
+
"transformer.h.55.mlp.dense_h_to_4h.bias": "pytorch_model-00029-of-00036.bin",
|
624 |
+
"transformer.h.55.mlp.dense_h_to_4h.weight": "pytorch_model-00029-of-00036.bin",
|
625 |
+
"transformer.h.55.post_attention_layernorm.bias": "pytorch_model-00029-of-00036.bin",
|
626 |
+
"transformer.h.55.post_attention_layernorm.weight": "pytorch_model-00029-of-00036.bin",
|
627 |
+
"transformer.h.55.self_attention.dense.bias": "pytorch_model-00029-of-00036.bin",
|
628 |
+
"transformer.h.55.self_attention.dense.weight": "pytorch_model-00029-of-00036.bin",
|
629 |
+
"transformer.h.55.self_attention.query_key_value.bias": "pytorch_model-00029-of-00036.bin",
|
630 |
+
"transformer.h.55.self_attention.query_key_value.weight": "pytorch_model-00029-of-00036.bin",
|
631 |
+
"transformer.h.56.input_layernorm.bias": "pytorch_model-00029-of-00036.bin",
|
632 |
+
"transformer.h.56.input_layernorm.weight": "pytorch_model-00029-of-00036.bin",
|
633 |
+
"transformer.h.56.mlp.dense_4h_to_h.bias": "pytorch_model-00030-of-00036.bin",
|
634 |
+
"transformer.h.56.mlp.dense_4h_to_h.weight": "pytorch_model-00030-of-00036.bin",
|
635 |
+
"transformer.h.56.mlp.dense_h_to_4h.bias": "pytorch_model-00030-of-00036.bin",
|
636 |
+
"transformer.h.56.mlp.dense_h_to_4h.weight": "pytorch_model-00030-of-00036.bin",
|
637 |
+
"transformer.h.56.post_attention_layernorm.bias": "pytorch_model-00029-of-00036.bin",
|
638 |
+
"transformer.h.56.post_attention_layernorm.weight": "pytorch_model-00029-of-00036.bin",
|
639 |
+
"transformer.h.56.self_attention.dense.bias": "pytorch_model-00029-of-00036.bin",
|
640 |
+
"transformer.h.56.self_attention.dense.weight": "pytorch_model-00029-of-00036.bin",
|
641 |
+
"transformer.h.56.self_attention.query_key_value.bias": "pytorch_model-00029-of-00036.bin",
|
642 |
+
"transformer.h.56.self_attention.query_key_value.weight": "pytorch_model-00029-of-00036.bin",
|
643 |
+
"transformer.h.57.input_layernorm.bias": "pytorch_model-00030-of-00036.bin",
|
644 |
+
"transformer.h.57.input_layernorm.weight": "pytorch_model-00030-of-00036.bin",
|
645 |
+
"transformer.h.57.mlp.dense_4h_to_h.bias": "pytorch_model-00030-of-00036.bin",
|
646 |
+
"transformer.h.57.mlp.dense_4h_to_h.weight": "pytorch_model-00030-of-00036.bin",
|
647 |
+
"transformer.h.57.mlp.dense_h_to_4h.bias": "pytorch_model-00030-of-00036.bin",
|
648 |
+
"transformer.h.57.mlp.dense_h_to_4h.weight": "pytorch_model-00030-of-00036.bin",
|
649 |
+
"transformer.h.57.post_attention_layernorm.bias": "pytorch_model-00030-of-00036.bin",
|
650 |
+
"transformer.h.57.post_attention_layernorm.weight": "pytorch_model-00030-of-00036.bin",
|
651 |
+
"transformer.h.57.self_attention.dense.bias": "pytorch_model-00030-of-00036.bin",
|
652 |
+
"transformer.h.57.self_attention.dense.weight": "pytorch_model-00030-of-00036.bin",
|
653 |
+
"transformer.h.57.self_attention.query_key_value.bias": "pytorch_model-00030-of-00036.bin",
|
654 |
+
"transformer.h.57.self_attention.query_key_value.weight": "pytorch_model-00030-of-00036.bin",
|
655 |
+
"transformer.h.58.input_layernorm.bias": "pytorch_model-00030-of-00036.bin",
|
656 |
+
"transformer.h.58.input_layernorm.weight": "pytorch_model-00030-of-00036.bin",
|
657 |
+
"transformer.h.58.mlp.dense_4h_to_h.bias": "pytorch_model-00031-of-00036.bin",
|
658 |
+
"transformer.h.58.mlp.dense_4h_to_h.weight": "pytorch_model-00031-of-00036.bin",
|
659 |
+
"transformer.h.58.mlp.dense_h_to_4h.bias": "pytorch_model-00031-of-00036.bin",
|
660 |
+
"transformer.h.58.mlp.dense_h_to_4h.weight": "pytorch_model-00031-of-00036.bin",
|
661 |
+
"transformer.h.58.post_attention_layernorm.bias": "pytorch_model-00030-of-00036.bin",
|
662 |
+
"transformer.h.58.post_attention_layernorm.weight": "pytorch_model-00030-of-00036.bin",
|
663 |
+
"transformer.h.58.self_attention.dense.bias": "pytorch_model-00030-of-00036.bin",
|
664 |
+
"transformer.h.58.self_attention.dense.weight": "pytorch_model-00030-of-00036.bin",
|
665 |
+
"transformer.h.58.self_attention.query_key_value.bias": "pytorch_model-00030-of-00036.bin",
|
666 |
+
"transformer.h.58.self_attention.query_key_value.weight": "pytorch_model-00030-of-00036.bin",
|
667 |
+
"transformer.h.59.input_layernorm.bias": "pytorch_model-00031-of-00036.bin",
|
668 |
+
"transformer.h.59.input_layernorm.weight": "pytorch_model-00031-of-00036.bin",
|
669 |
+
"transformer.h.59.mlp.dense_4h_to_h.bias": "pytorch_model-00031-of-00036.bin",
|
670 |
+
"transformer.h.59.mlp.dense_4h_to_h.weight": "pytorch_model-00031-of-00036.bin",
|
671 |
+
"transformer.h.59.mlp.dense_h_to_4h.bias": "pytorch_model-00031-of-00036.bin",
|
672 |
+
"transformer.h.59.mlp.dense_h_to_4h.weight": "pytorch_model-00031-of-00036.bin",
|
673 |
+
"transformer.h.59.post_attention_layernorm.bias": "pytorch_model-00031-of-00036.bin",
|
674 |
+
"transformer.h.59.post_attention_layernorm.weight": "pytorch_model-00031-of-00036.bin",
|
675 |
+
"transformer.h.59.self_attention.dense.bias": "pytorch_model-00031-of-00036.bin",
|
676 |
+
"transformer.h.59.self_attention.dense.weight": "pytorch_model-00031-of-00036.bin",
|
677 |
+
"transformer.h.59.self_attention.query_key_value.bias": "pytorch_model-00031-of-00036.bin",
|
678 |
+
"transformer.h.59.self_attention.query_key_value.weight": "pytorch_model-00031-of-00036.bin",
|
679 |
+
"transformer.h.6.input_layernorm.bias": "pytorch_model-00004-of-00036.bin",
|
680 |
+
"transformer.h.6.input_layernorm.weight": "pytorch_model-00004-of-00036.bin",
|
681 |
+
"transformer.h.6.mlp.dense_4h_to_h.bias": "pytorch_model-00005-of-00036.bin",
|
682 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00036.bin",
|
683 |
+
"transformer.h.6.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00036.bin",
|
684 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00036.bin",
|
685 |
+
"transformer.h.6.post_attention_layernorm.bias": "pytorch_model-00004-of-00036.bin",
|
686 |
+
"transformer.h.6.post_attention_layernorm.weight": "pytorch_model-00004-of-00036.bin",
|
687 |
+
"transformer.h.6.self_attention.dense.bias": "pytorch_model-00004-of-00036.bin",
|
688 |
+
"transformer.h.6.self_attention.dense.weight": "pytorch_model-00004-of-00036.bin",
|
689 |
+
"transformer.h.6.self_attention.query_key_value.bias": "pytorch_model-00004-of-00036.bin",
|
690 |
+
"transformer.h.6.self_attention.query_key_value.weight": "pytorch_model-00004-of-00036.bin",
|
691 |
+
"transformer.h.60.input_layernorm.bias": "pytorch_model-00031-of-00036.bin",
|
692 |
+
"transformer.h.60.input_layernorm.weight": "pytorch_model-00031-of-00036.bin",
|
693 |
+
"transformer.h.60.mlp.dense_4h_to_h.bias": "pytorch_model-00032-of-00036.bin",
|
694 |
+
"transformer.h.60.mlp.dense_4h_to_h.weight": "pytorch_model-00032-of-00036.bin",
|
695 |
+
"transformer.h.60.mlp.dense_h_to_4h.bias": "pytorch_model-00032-of-00036.bin",
|
696 |
+
"transformer.h.60.mlp.dense_h_to_4h.weight": "pytorch_model-00032-of-00036.bin",
|
697 |
+
"transformer.h.60.post_attention_layernorm.bias": "pytorch_model-00031-of-00036.bin",
|
698 |
+
"transformer.h.60.post_attention_layernorm.weight": "pytorch_model-00031-of-00036.bin",
|
699 |
+
"transformer.h.60.self_attention.dense.bias": "pytorch_model-00031-of-00036.bin",
|
700 |
+
"transformer.h.60.self_attention.dense.weight": "pytorch_model-00031-of-00036.bin",
|
701 |
+
"transformer.h.60.self_attention.query_key_value.bias": "pytorch_model-00031-of-00036.bin",
|
702 |
+
"transformer.h.60.self_attention.query_key_value.weight": "pytorch_model-00031-of-00036.bin",
|
703 |
+
"transformer.h.61.input_layernorm.bias": "pytorch_model-00032-of-00036.bin",
|
704 |
+
"transformer.h.61.input_layernorm.weight": "pytorch_model-00032-of-00036.bin",
|
705 |
+
"transformer.h.61.mlp.dense_4h_to_h.bias": "pytorch_model-00032-of-00036.bin",
|
706 |
+
"transformer.h.61.mlp.dense_4h_to_h.weight": "pytorch_model-00032-of-00036.bin",
|
707 |
+
"transformer.h.61.mlp.dense_h_to_4h.bias": "pytorch_model-00032-of-00036.bin",
|
708 |
+
"transformer.h.61.mlp.dense_h_to_4h.weight": "pytorch_model-00032-of-00036.bin",
|
709 |
+
"transformer.h.61.post_attention_layernorm.bias": "pytorch_model-00032-of-00036.bin",
|
710 |
+
"transformer.h.61.post_attention_layernorm.weight": "pytorch_model-00032-of-00036.bin",
|
711 |
+
"transformer.h.61.self_attention.dense.bias": "pytorch_model-00032-of-00036.bin",
|
712 |
+
"transformer.h.61.self_attention.dense.weight": "pytorch_model-00032-of-00036.bin",
|
713 |
+
"transformer.h.61.self_attention.query_key_value.bias": "pytorch_model-00032-of-00036.bin",
|
714 |
+
"transformer.h.61.self_attention.query_key_value.weight": "pytorch_model-00032-of-00036.bin",
|
715 |
+
"transformer.h.62.input_layernorm.bias": "pytorch_model-00032-of-00036.bin",
|
716 |
+
"transformer.h.62.input_layernorm.weight": "pytorch_model-00032-of-00036.bin",
|
717 |
+
"transformer.h.62.mlp.dense_4h_to_h.bias": "pytorch_model-00033-of-00036.bin",
|
718 |
+
"transformer.h.62.mlp.dense_4h_to_h.weight": "pytorch_model-00033-of-00036.bin",
|
719 |
+
"transformer.h.62.mlp.dense_h_to_4h.bias": "pytorch_model-00033-of-00036.bin",
|
720 |
+
"transformer.h.62.mlp.dense_h_to_4h.weight": "pytorch_model-00033-of-00036.bin",
|
721 |
+
"transformer.h.62.post_attention_layernorm.bias": "pytorch_model-00032-of-00036.bin",
|
722 |
+
"transformer.h.62.post_attention_layernorm.weight": "pytorch_model-00032-of-00036.bin",
|
723 |
+
"transformer.h.62.self_attention.dense.bias": "pytorch_model-00032-of-00036.bin",
|
724 |
+
"transformer.h.62.self_attention.dense.weight": "pytorch_model-00032-of-00036.bin",
|
725 |
+
"transformer.h.62.self_attention.query_key_value.bias": "pytorch_model-00032-of-00036.bin",
|
726 |
+
"transformer.h.62.self_attention.query_key_value.weight": "pytorch_model-00032-of-00036.bin",
|
727 |
+
"transformer.h.63.input_layernorm.bias": "pytorch_model-00033-of-00036.bin",
|
728 |
+
"transformer.h.63.input_layernorm.weight": "pytorch_model-00033-of-00036.bin",
|
729 |
+
"transformer.h.63.mlp.dense_4h_to_h.bias": "pytorch_model-00033-of-00036.bin",
|
730 |
+
"transformer.h.63.mlp.dense_4h_to_h.weight": "pytorch_model-00033-of-00036.bin",
|
731 |
+
"transformer.h.63.mlp.dense_h_to_4h.bias": "pytorch_model-00033-of-00036.bin",
|
732 |
+
"transformer.h.63.mlp.dense_h_to_4h.weight": "pytorch_model-00033-of-00036.bin",
|
733 |
+
"transformer.h.63.post_attention_layernorm.bias": "pytorch_model-00033-of-00036.bin",
|
734 |
+
"transformer.h.63.post_attention_layernorm.weight": "pytorch_model-00033-of-00036.bin",
|
735 |
+
"transformer.h.63.self_attention.dense.bias": "pytorch_model-00033-of-00036.bin",
|
736 |
+
"transformer.h.63.self_attention.dense.weight": "pytorch_model-00033-of-00036.bin",
|
737 |
+
"transformer.h.63.self_attention.query_key_value.bias": "pytorch_model-00033-of-00036.bin",
|
738 |
+
"transformer.h.63.self_attention.query_key_value.weight": "pytorch_model-00033-of-00036.bin",
|
739 |
+
"transformer.h.64.input_layernorm.bias": "pytorch_model-00033-of-00036.bin",
|
740 |
+
"transformer.h.64.input_layernorm.weight": "pytorch_model-00033-of-00036.bin",
|
741 |
+
"transformer.h.64.mlp.dense_4h_to_h.bias": "pytorch_model-00034-of-00036.bin",
|
742 |
+
"transformer.h.64.mlp.dense_4h_to_h.weight": "pytorch_model-00034-of-00036.bin",
|
743 |
+
"transformer.h.64.mlp.dense_h_to_4h.bias": "pytorch_model-00034-of-00036.bin",
|
744 |
+
"transformer.h.64.mlp.dense_h_to_4h.weight": "pytorch_model-00034-of-00036.bin",
|
745 |
+
"transformer.h.64.post_attention_layernorm.bias": "pytorch_model-00033-of-00036.bin",
|
746 |
+
"transformer.h.64.post_attention_layernorm.weight": "pytorch_model-00033-of-00036.bin",
|
747 |
+
"transformer.h.64.self_attention.dense.bias": "pytorch_model-00033-of-00036.bin",
|
748 |
+
"transformer.h.64.self_attention.dense.weight": "pytorch_model-00033-of-00036.bin",
|
749 |
+
"transformer.h.64.self_attention.query_key_value.bias": "pytorch_model-00033-of-00036.bin",
|
750 |
+
"transformer.h.64.self_attention.query_key_value.weight": "pytorch_model-00033-of-00036.bin",
|
751 |
+
"transformer.h.65.input_layernorm.bias": "pytorch_model-00034-of-00036.bin",
|
752 |
+
"transformer.h.65.input_layernorm.weight": "pytorch_model-00034-of-00036.bin",
|
753 |
+
"transformer.h.65.mlp.dense_4h_to_h.bias": "pytorch_model-00034-of-00036.bin",
|
754 |
+
"transformer.h.65.mlp.dense_4h_to_h.weight": "pytorch_model-00034-of-00036.bin",
|
755 |
+
"transformer.h.65.mlp.dense_h_to_4h.bias": "pytorch_model-00034-of-00036.bin",
|
756 |
+
"transformer.h.65.mlp.dense_h_to_4h.weight": "pytorch_model-00034-of-00036.bin",
|
757 |
+
"transformer.h.65.post_attention_layernorm.bias": "pytorch_model-00034-of-00036.bin",
|
758 |
+
"transformer.h.65.post_attention_layernorm.weight": "pytorch_model-00034-of-00036.bin",
|
759 |
+
"transformer.h.65.self_attention.dense.bias": "pytorch_model-00034-of-00036.bin",
|
760 |
+
"transformer.h.65.self_attention.dense.weight": "pytorch_model-00034-of-00036.bin",
|
761 |
+
"transformer.h.65.self_attention.query_key_value.bias": "pytorch_model-00034-of-00036.bin",
|
762 |
+
"transformer.h.65.self_attention.query_key_value.weight": "pytorch_model-00034-of-00036.bin",
|
763 |
+
"transformer.h.66.input_layernorm.bias": "pytorch_model-00034-of-00036.bin",
|
764 |
+
"transformer.h.66.input_layernorm.weight": "pytorch_model-00034-of-00036.bin",
|
765 |
+
"transformer.h.66.mlp.dense_4h_to_h.bias": "pytorch_model-00035-of-00036.bin",
|
766 |
+
"transformer.h.66.mlp.dense_4h_to_h.weight": "pytorch_model-00035-of-00036.bin",
|
767 |
+
"transformer.h.66.mlp.dense_h_to_4h.bias": "pytorch_model-00035-of-00036.bin",
|
768 |
+
"transformer.h.66.mlp.dense_h_to_4h.weight": "pytorch_model-00035-of-00036.bin",
|
769 |
+
"transformer.h.66.post_attention_layernorm.bias": "pytorch_model-00034-of-00036.bin",
|
770 |
+
"transformer.h.66.post_attention_layernorm.weight": "pytorch_model-00034-of-00036.bin",
|
771 |
+
"transformer.h.66.self_attention.dense.bias": "pytorch_model-00034-of-00036.bin",
|
772 |
+
"transformer.h.66.self_attention.dense.weight": "pytorch_model-00034-of-00036.bin",
|
773 |
+
"transformer.h.66.self_attention.query_key_value.bias": "pytorch_model-00034-of-00036.bin",
|
774 |
+
"transformer.h.66.self_attention.query_key_value.weight": "pytorch_model-00034-of-00036.bin",
|
775 |
+
"transformer.h.67.input_layernorm.bias": "pytorch_model-00035-of-00036.bin",
|
776 |
+
"transformer.h.67.input_layernorm.weight": "pytorch_model-00035-of-00036.bin",
|
777 |
+
"transformer.h.67.mlp.dense_4h_to_h.bias": "pytorch_model-00035-of-00036.bin",
|
778 |
+
"transformer.h.67.mlp.dense_4h_to_h.weight": "pytorch_model-00035-of-00036.bin",
|
779 |
+
"transformer.h.67.mlp.dense_h_to_4h.bias": "pytorch_model-00035-of-00036.bin",
|
780 |
+
"transformer.h.67.mlp.dense_h_to_4h.weight": "pytorch_model-00035-of-00036.bin",
|
781 |
+
"transformer.h.67.post_attention_layernorm.bias": "pytorch_model-00035-of-00036.bin",
|
782 |
+
"transformer.h.67.post_attention_layernorm.weight": "pytorch_model-00035-of-00036.bin",
|
783 |
+
"transformer.h.67.self_attention.dense.bias": "pytorch_model-00035-of-00036.bin",
|
784 |
+
"transformer.h.67.self_attention.dense.weight": "pytorch_model-00035-of-00036.bin",
|
785 |
+
"transformer.h.67.self_attention.query_key_value.bias": "pytorch_model-00035-of-00036.bin",
|
786 |
+
"transformer.h.67.self_attention.query_key_value.weight": "pytorch_model-00035-of-00036.bin",
|
787 |
+
"transformer.h.68.input_layernorm.bias": "pytorch_model-00035-of-00036.bin",
|
788 |
+
"transformer.h.68.input_layernorm.weight": "pytorch_model-00035-of-00036.bin",
|
789 |
+
"transformer.h.68.mlp.dense_4h_to_h.bias": "pytorch_model-00036-of-00036.bin",
|
790 |
+
"transformer.h.68.mlp.dense_4h_to_h.weight": "pytorch_model-00036-of-00036.bin",
|
791 |
+
"transformer.h.68.mlp.dense_h_to_4h.bias": "pytorch_model-00036-of-00036.bin",
|
792 |
+
"transformer.h.68.mlp.dense_h_to_4h.weight": "pytorch_model-00036-of-00036.bin",
|
793 |
+
"transformer.h.68.post_attention_layernorm.bias": "pytorch_model-00035-of-00036.bin",
|
794 |
+
"transformer.h.68.post_attention_layernorm.weight": "pytorch_model-00035-of-00036.bin",
|
795 |
+
"transformer.h.68.self_attention.dense.bias": "pytorch_model-00035-of-00036.bin",
|
796 |
+
"transformer.h.68.self_attention.dense.weight": "pytorch_model-00035-of-00036.bin",
|
797 |
+
"transformer.h.68.self_attention.query_key_value.bias": "pytorch_model-00035-of-00036.bin",
|
798 |
+
"transformer.h.68.self_attention.query_key_value.weight": "pytorch_model-00035-of-00036.bin",
|
799 |
+
"transformer.h.69.input_layernorm.bias": "pytorch_model-00036-of-00036.bin",
|
800 |
+
"transformer.h.69.input_layernorm.weight": "pytorch_model-00036-of-00036.bin",
|
801 |
+
"transformer.h.69.mlp.dense_4h_to_h.bias": "pytorch_model-00036-of-00036.bin",
|
802 |
+
"transformer.h.69.mlp.dense_4h_to_h.weight": "pytorch_model-00036-of-00036.bin",
|
803 |
+
"transformer.h.69.mlp.dense_h_to_4h.bias": "pytorch_model-00036-of-00036.bin",
|
804 |
+
"transformer.h.69.mlp.dense_h_to_4h.weight": "pytorch_model-00036-of-00036.bin",
|
805 |
+
"transformer.h.69.post_attention_layernorm.bias": "pytorch_model-00036-of-00036.bin",
|
806 |
+
"transformer.h.69.post_attention_layernorm.weight": "pytorch_model-00036-of-00036.bin",
|
807 |
+
"transformer.h.69.self_attention.dense.bias": "pytorch_model-00036-of-00036.bin",
|
808 |
+
"transformer.h.69.self_attention.dense.weight": "pytorch_model-00036-of-00036.bin",
|
809 |
+
"transformer.h.69.self_attention.query_key_value.bias": "pytorch_model-00036-of-00036.bin",
|
810 |
+
"transformer.h.69.self_attention.query_key_value.weight": "pytorch_model-00036-of-00036.bin",
|
811 |
+
"transformer.h.7.input_layernorm.bias": "pytorch_model-00005-of-00036.bin",
|
812 |
+
"transformer.h.7.input_layernorm.weight": "pytorch_model-00005-of-00036.bin",
|
813 |
+
"transformer.h.7.mlp.dense_4h_to_h.bias": "pytorch_model-00005-of-00036.bin",
|
814 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00036.bin",
|
815 |
+
"transformer.h.7.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00036.bin",
|
816 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00036.bin",
|
817 |
+
"transformer.h.7.post_attention_layernorm.bias": "pytorch_model-00005-of-00036.bin",
|
818 |
+
"transformer.h.7.post_attention_layernorm.weight": "pytorch_model-00005-of-00036.bin",
|
819 |
+
"transformer.h.7.self_attention.dense.bias": "pytorch_model-00005-of-00036.bin",
|
820 |
+
"transformer.h.7.self_attention.dense.weight": "pytorch_model-00005-of-00036.bin",
|
821 |
+
"transformer.h.7.self_attention.query_key_value.bias": "pytorch_model-00005-of-00036.bin",
|
822 |
+
"transformer.h.7.self_attention.query_key_value.weight": "pytorch_model-00005-of-00036.bin",
|
823 |
+
"transformer.h.8.input_layernorm.bias": "pytorch_model-00005-of-00036.bin",
|
824 |
+
"transformer.h.8.input_layernorm.weight": "pytorch_model-00005-of-00036.bin",
|
825 |
+
"transformer.h.8.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00036.bin",
|
826 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00036.bin",
|
827 |
+
"transformer.h.8.mlp.dense_h_to_4h.bias": "pytorch_model-00006-of-00036.bin",
|
828 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00036.bin",
|
829 |
+
"transformer.h.8.post_attention_layernorm.bias": "pytorch_model-00005-of-00036.bin",
|
830 |
+
"transformer.h.8.post_attention_layernorm.weight": "pytorch_model-00005-of-00036.bin",
|
831 |
+
"transformer.h.8.self_attention.dense.bias": "pytorch_model-00005-of-00036.bin",
|
832 |
+
"transformer.h.8.self_attention.dense.weight": "pytorch_model-00005-of-00036.bin",
|
833 |
+
"transformer.h.8.self_attention.query_key_value.bias": "pytorch_model-00005-of-00036.bin",
|
834 |
+
"transformer.h.8.self_attention.query_key_value.weight": "pytorch_model-00005-of-00036.bin",
|
835 |
+
"transformer.h.9.input_layernorm.bias": "pytorch_model-00006-of-00036.bin",
|
836 |
+
"transformer.h.9.input_layernorm.weight": "pytorch_model-00006-of-00036.bin",
|
837 |
+
"transformer.h.9.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00036.bin",
|
838 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00036.bin",
|
839 |
+
"transformer.h.9.mlp.dense_h_to_4h.bias": "pytorch_model-00006-of-00036.bin",
|
840 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00036.bin",
|
841 |
+
"transformer.h.9.post_attention_layernorm.bias": "pytorch_model-00006-of-00036.bin",
|
842 |
+
"transformer.h.9.post_attention_layernorm.weight": "pytorch_model-00006-of-00036.bin",
|
843 |
+
"transformer.h.9.self_attention.dense.bias": "pytorch_model-00006-of-00036.bin",
|
844 |
+
"transformer.h.9.self_attention.dense.weight": "pytorch_model-00006-of-00036.bin",
|
845 |
+
"transformer.h.9.self_attention.query_key_value.bias": "pytorch_model-00006-of-00036.bin",
|
846 |
+
"transformer.h.9.self_attention.query_key_value.weight": "pytorch_model-00006-of-00036.bin",
|
847 |
+
"transformer.ln_f.bias": "pytorch_model-00036-of-00036.bin",
|
848 |
+
"transformer.ln_f.weight": "pytorch_model-00036-of-00036.bin",
|
849 |
+
"transformer.word_embeddings.weight": "pytorch_model-00001-of-00036.bin",
|
850 |
+
"transformer.word_embeddings_layernorm.bias": "pytorch_model-00001-of-00036.bin",
|
851 |
+
"transformer.word_embeddings_layernorm.weight": "pytorch_model-00001-of-00036.bin"
|
852 |
+
}
|
853 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0d908b4f9326e0998815690e325b6abbd378978553e10627924dd825db7e243
|
3 |
+
size 17477553
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
|
3 |
+
size 4241003
|
tokenizer_config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<bos>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"bos_token": "<bos>",
|
39 |
+
"clean_up_tokenization_spaces": false,
|
40 |
+
"eos_token": "<eos>",
|
41 |
+
"legacy": null,
|
42 |
+
"model_max_length": 1000000000000000019884624838656,
|
43 |
+
"pad_token": "<pad>",
|
44 |
+
"sp_model_kwargs": {},
|
45 |
+
"spaces_between_special_tokens": false,
|
46 |
+
"tokenizer_class": "GemmaTokenizer",
|
47 |
+
"unk_token": "<unk>",
|
48 |
+
"use_default_system_prompt": false
|
49 |
+
}
|