retiredcarboxyl Abhaykoul commited on
Commit
032c2ca
·
verified ·
0 Parent(s):

Duplicate from OEvortex/HelpingAI-180B-base

Browse files

Co-authored-by: HelpingAI <Abhaykoul@users.noreply.huggingface.co>

Files changed (47) hide show
  1. .gitattributes +37 -0
  2. README.md +26 -0
  3. config.json +28 -0
  4. configuration_HelpingAI.py +60 -0
  5. generation_config.json +6 -0
  6. modeling_HelpingAI.py +670 -0
  7. pytorch_model-00001-of-00036.bin +3 -0
  8. pytorch_model-00002-of-00036.bin +3 -0
  9. pytorch_model-00003-of-00036.bin +3 -0
  10. pytorch_model-00004-of-00036.bin +3 -0
  11. pytorch_model-00005-of-00036.bin +3 -0
  12. pytorch_model-00006-of-00036.bin +3 -0
  13. pytorch_model-00007-of-00036.bin +3 -0
  14. pytorch_model-00008-of-00036.bin +3 -0
  15. pytorch_model-00009-of-00036.bin +3 -0
  16. pytorch_model-00010-of-00036.bin +3 -0
  17. pytorch_model-00011-of-00036.bin +3 -0
  18. pytorch_model-00012-of-00036.bin +3 -0
  19. pytorch_model-00013-of-00036.bin +3 -0
  20. pytorch_model-00014-of-00036.bin +3 -0
  21. pytorch_model-00015-of-00036.bin +3 -0
  22. pytorch_model-00016-of-00036.bin +3 -0
  23. pytorch_model-00017-of-00036.bin +3 -0
  24. pytorch_model-00018-of-00036.bin +3 -0
  25. pytorch_model-00019-of-00036.bin +3 -0
  26. pytorch_model-00020-of-00036.bin +3 -0
  27. pytorch_model-00021-of-00036.bin +3 -0
  28. pytorch_model-00022-of-00036.bin +3 -0
  29. pytorch_model-00023-of-00036.bin +3 -0
  30. pytorch_model-00024-of-00036.bin +3 -0
  31. pytorch_model-00025-of-00036.bin +3 -0
  32. pytorch_model-00026-of-00036.bin +3 -0
  33. pytorch_model-00027-of-00036.bin +3 -0
  34. pytorch_model-00028-of-00036.bin +3 -0
  35. pytorch_model-00029-of-00036.bin +3 -0
  36. pytorch_model-00030-of-00036.bin +3 -0
  37. pytorch_model-00031-of-00036.bin +3 -0
  38. pytorch_model-00032-of-00036.bin +3 -0
  39. pytorch_model-00033-of-00036.bin +3 -0
  40. pytorch_model-00034-of-00036.bin +3 -0
  41. pytorch_model-00035-of-00036.bin +3 -0
  42. pytorch_model-00036-of-00036.bin +3 -0
  43. pytorch_model.bin.index.json +853 -0
  44. special_tokens_map.json +30 -0
  45. tokenizer.json +3 -0
  46. tokenizer.model +3 -0
  47. tokenizer_config.json +49 -0
.gitattributes ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer[[:space:]](1).json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - gemma
8
+ ---
9
+
10
+ # HelpingAI-180B-base
11
+
12
+ ## Description
13
+ The HelpingAI-180B-base model is a large-scale artificial intelligence model developed to assist in various natural language processing tasks. Trained on a diverse range of data sources, this model is designed to generate text, facilitate language understanding, and support various downstream tasks.
14
+
15
+ ## Model Information
16
+ - **Model size**: 180 billion parameters
17
+ - **Training data**: Diverse datasets covering a wide range of topics and domains.
18
+ - **Training objective**: Language modeling with an emphasis on understanding and generating human-like text.
19
+ - **Tokenizer**: Gemma tokenizer
20
+ ## Intended Use
21
+ The HelpingAI-180B-base model is intended for researchers, developers, and practitioners in the field of natural language processing (NLP). It can be used for a variety of tasks, including but not limited to:
22
+ - Text generation
23
+ - Language understanding
24
+ - Text summarization
25
+ - Dialogue generation
26
+ This model for research
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HelpingAIForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_HelpingAI.HelpingAIConfig",
7
+ "AutoModelForCausalLM": "modeling_HelpingAI.HelpingAIForCausalLM"
8
+ },
9
+ "attention_dropout": 0.0,
10
+ "attention_softmax_in_fp32": true,
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_dropout": 0.0,
14
+ "hidden_size": 14336,
15
+ "initializer_range": 0.02,
16
+ "layer_norm_epsilon": 1e-05,
17
+ "masked_softmax_fusion": true,
18
+ "model_type": "HelpingAI",
19
+ "n_head": 112,
20
+ "n_layer": 70,
21
+ "pad_token_id": 3,
22
+ "pretraining_tp": 4,
23
+ "slow_but_exact": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.34.0",
26
+ "use_cache": true,
27
+ "vocab_size": 250880
28
+ }
configuration_HelpingAI.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ HelpingAI model configuration"""
2
+
3
+ from transformers import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+ class HelpingAIConfig(PretrainedConfig):
10
+ keys_to_ignore_at_inference = ["past_key_values"]
11
+ model_type = "HelpingAI"
12
+ def __init__(
13
+ self,
14
+ vocab_size=50304,
15
+ hidden_size=2560,
16
+ intermediate_size=6912,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ num_key_value_heads=32,
20
+ head_dim=256,
21
+ hidden_act="silu",
22
+ max_position_embeddings=4096,
23
+ initializer_range=0.02,
24
+ rms_norm_eps=1e-6,
25
+ use_cache=True,
26
+ hidden_activation=None,
27
+ rope_theta=10000,
28
+ rope_pct=0.25,
29
+ attention_bias=False,
30
+ attention_dropout=0.0,
31
+ num_experts_per_tok=2,
32
+ num_local_experts=8,
33
+ router_aux_loss_coef=0.02,
34
+ output_router_logits=False,
35
+ norm_eps=1.0e-5,
36
+ **kwargs,
37
+ ):
38
+ self.vocab_size = vocab_size
39
+ self.max_position_embeddings = max_position_embeddings
40
+ self.hidden_size = hidden_size
41
+ self.intermediate_size = intermediate_size
42
+ self.num_hidden_layers = num_hidden_layers
43
+ self.num_attention_heads = num_attention_heads
44
+ self.head_dim = head_dim
45
+ self.hidden_act = hidden_act
46
+ self.hidden_activation = hidden_activation
47
+ self.num_key_value_heads = num_key_value_heads
48
+ self.initializer_range = initializer_range
49
+ self.rms_norm_eps = rms_norm_eps
50
+ self.use_cache = use_cache
51
+ self.rope_theta = rope_theta
52
+ self.attention_bias = attention_bias
53
+ self.attention_dropout = attention_dropout
54
+ self.num_experts_per_tok = num_experts_per_tok
55
+ self.num_local_experts = num_local_experts
56
+ self.router_aux_loss_coef = router_aux_loss_coef
57
+ self.output_router_logits = output_router_logits
58
+ self.rope_pct = rope_pct
59
+ self.norm_eps = norm_eps
60
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "do_sample": true,
5
+ "transformers_version": "4.40.0.dev0"
6
+ }
modeling_HelpingAI.py ADDED
@@ -0,0 +1,670 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ HelpingAI model . """
2
+ from typing import Optional, Tuple, Union
3
+ import math
4
+
5
+ import torch
6
+ import torch.utils.checkpoint
7
+ from transformers import AutoModel, AutoModelForCausalLM
8
+ from torch import nn
9
+ from torch.nn import CrossEntropyLoss
10
+ from transformers.modeling_outputs import (
11
+ BaseModelOutputWithPast,
12
+ CausalLMOutputWithPast,
13
+ )
14
+ from transformers.modeling_utils import PreTrainedModel
15
+ from transformers.utils import logging
16
+ from .configuration_HelpingAI import HelpingAIConfig
17
+
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+
22
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
23
+ def _make_causal_mask(
24
+ input_ids_shape: torch.Size,
25
+ dtype: torch.dtype,
26
+ device: torch.device,
27
+ past_key_values_length: int = 0,
28
+ ):
29
+ """Make causal mask used for bi-directional self-attention."""
30
+ batch_size, tgt_len = input_ids_shape
31
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
32
+ mask_cond = torch.arange(mask.size(-1), device=device)
33
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
34
+ mask = mask.to(dtype)
35
+ if past_key_values_length > 0:
36
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
37
+ return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
38
+
39
+
40
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
41
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
42
+ """Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
43
+ batch_size, src_len = mask.size()
44
+ tgt_len = tgt_len if tgt_len is not None else src_len
45
+
46
+ expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
47
+ inverted_mask = 1.0 - expanded_mask
48
+
49
+ return inverted_mask.masked_fill(
50
+ inverted_mask.to(torch.bool), torch.finfo(dtype).min
51
+ )
52
+
53
+
54
+ class RotaryEmbedding(nn.Module):
55
+ def __init__(
56
+ self,
57
+ dim: int,
58
+ max_position_embeddings: int,
59
+ base: int = 10_000,
60
+ device: Optional[torch.device] = None,
61
+ ):
62
+ super().__init__()
63
+
64
+ self.dim = dim
65
+ self.max_position_embeddings = max_position_embeddings
66
+ self.base = base
67
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
68
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
69
+
70
+ # Build here to make `torch.jit.trace` work.
71
+ self._set_cos_sin_cache(
72
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
73
+ )
74
+
75
+ def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
76
+ self.max_seq_len_cached = seq_len
77
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
78
+
79
+ # Don't do einsum, it converts fp32 to fp16 under AMP
80
+ # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
81
+ freqs = torch.outer(t, self.inv_freq)
82
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
83
+ emb = torch.cat((freqs, freqs), dim=-1)
84
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
85
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
86
+
87
+ def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
88
+ # x: [batch_size, num_heads, seq_len, head_size]
89
+ if seq_len > self.max_seq_len_cached:
90
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
91
+ return (
92
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
93
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
94
+ )
95
+
96
+
97
+ def rotate_half(x: torch.Tensor):
98
+ """Rotates half the hidden dims of the input."""
99
+ x1, x2 = torch.chunk(x, 2, dim=-1)
100
+ return torch.cat((-x2, x1), dim=-1)
101
+
102
+
103
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
104
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
105
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
106
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
107
+ cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
108
+ sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
109
+ q_embed = (q * cos) + (rotate_half(q) * sin)
110
+ k_embed = (k * cos) + (rotate_half(k) * sin)
111
+ return q_embed, k_embed
112
+
113
+
114
+ class MLP(nn.Module):
115
+ def __init__(self, config: HelpingAIConfig):
116
+ super().__init__()
117
+ self.config = config
118
+ self.hidden_size = config.hidden_size
119
+ self.intermediate_size = config.intermediate_size
120
+ self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
121
+ self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
122
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
123
+ self.act_fn = nn.SiLU()
124
+
125
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
126
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
127
+
128
+
129
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
130
+ """
131
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
132
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
133
+ """
134
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
135
+ if n_rep == 1:
136
+ return hidden_states
137
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
138
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
139
+
140
+
141
+ class Attention(nn.Module):
142
+ def __init__(self, config: HelpingAIConfig):
143
+ super().__init__()
144
+ self.config = config
145
+ self.hidden_size = config.hidden_size
146
+ self.num_heads = config.num_attention_heads
147
+ self.head_dim = self.hidden_size // self.num_heads
148
+ self.num_key_value_heads = config.num_key_value_heads
149
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
150
+ self.max_position_embeddings = config.max_position_embeddings
151
+
152
+ if (self.head_dim * self.num_heads) != self.hidden_size:
153
+ raise ValueError(
154
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
155
+ f" and `num_heads`: {self.num_heads})."
156
+ )
157
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
158
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
159
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
160
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
161
+
162
+ self._init_rope()
163
+
164
+ def _init_rope(self):
165
+ self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
166
+ self.rotary_emb = RotaryEmbedding(
167
+ self.rotary_ndims,
168
+ max_position_embeddings=self.config.max_position_embeddings,
169
+ base=self.config.rope_theta,
170
+ )
171
+
172
+ def forward(
173
+ self,
174
+ hidden_states: torch.FloatTensor,
175
+ attention_mask: torch.FloatTensor,
176
+ position_ids: torch.LongTensor,
177
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
178
+ output_attentions: Optional[bool] = False,
179
+ use_cache: Optional[bool] = False,
180
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
181
+ bsz, q_len, _ = hidden_states.size()
182
+
183
+ query_states = self.q_proj(hidden_states)
184
+ key_states = self.k_proj(hidden_states)
185
+ value_states = self.v_proj(hidden_states)
186
+
187
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
188
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
189
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
190
+
191
+ query_rot = query_states[..., : self.rotary_ndims]
192
+ query_pass = query_states[..., self.rotary_ndims :]
193
+ key_rot = key_states[..., : self.rotary_ndims]
194
+ key_pass = key_states[..., self.rotary_ndims :]
195
+
196
+ kv_seq_len = key_states.shape[-2]
197
+ if past_key_value is not None:
198
+ kv_seq_len += past_key_value[0].shape[-2]
199
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
200
+ query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
201
+
202
+ # [batch_size, num_heads, seq_len, head_dim]
203
+ query_states = torch.cat((query_states, query_pass), dim=-1)
204
+ key_states = torch.cat((key_states, key_pass), dim=-1)
205
+
206
+ if past_key_value is not None:
207
+ # Reuse k, v, self_attention
208
+ key_states = torch.cat((past_key_value[0], key_states), dim=2)
209
+ value_states = torch.cat((past_key_value[1], value_states), dim=2)
210
+
211
+ past_key_value = (key_states, value_states) if use_cache else None
212
+
213
+ # Repeat k/v heads if n_kv_heads < n_heads
214
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
215
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
216
+
217
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
218
+
219
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
220
+ raise ValueError(
221
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
222
+ f" {attn_weights.size()}"
223
+ )
224
+
225
+ if attention_mask is not None:
226
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
227
+ raise ValueError(
228
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
229
+ )
230
+ attn_weights = attn_weights + attention_mask
231
+
232
+ # Upcast attention to fp32
233
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
234
+ attn_output = torch.matmul(attn_weights, value_states)
235
+
236
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
237
+ raise ValueError(
238
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
239
+ f" {attn_output.size()}"
240
+ )
241
+
242
+ # Merge heads
243
+ attn_output = attn_output.transpose(1, 2).contiguous()
244
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
245
+
246
+ # Final linear projection
247
+ attn_output = self.o_proj(attn_output)
248
+
249
+ if not output_attentions:
250
+ attn_weights = None
251
+
252
+ return attn_output, attn_weights, past_key_value
253
+
254
+
255
+ class DecoderLayer(nn.Module):
256
+ def __init__(self, config: HelpingAIConfig):
257
+ super().__init__()
258
+ self.self_attn = Attention(config)
259
+ self.mlp = MLP(config)
260
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
261
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
262
+
263
+ def forward(
264
+ self,
265
+ hidden_states: Optional[torch.FloatTensor],
266
+ attention_mask: Optional[torch.FloatTensor] = None,
267
+ position_ids: Optional[torch.LongTensor] = None,
268
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
269
+ output_attentions: Optional[bool] = False,
270
+ use_cache: Optional[bool] = False,
271
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
272
+ residual = hidden_states
273
+
274
+ hidden_states = self.input_layernorm(hidden_states)
275
+
276
+ # Self Attention
277
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
278
+ hidden_states=hidden_states,
279
+ attention_mask=attention_mask,
280
+ position_ids=position_ids,
281
+ past_key_value=past_key_value,
282
+ output_attentions=output_attentions,
283
+ use_cache=use_cache,
284
+ )
285
+ hidden_states = residual + hidden_states
286
+
287
+ # Fully Connected
288
+ residual = hidden_states
289
+ hidden_states = self.post_attention_layernorm(hidden_states)
290
+ hidden_states = self.mlp(hidden_states)
291
+ hidden_states = residual + hidden_states
292
+
293
+ outputs = (hidden_states,)
294
+
295
+ if output_attentions:
296
+ outputs += (self_attn_weights,)
297
+
298
+ if use_cache:
299
+ outputs += (present_key_value,)
300
+
301
+ return outputs
302
+
303
+
304
+ class HelpingAIPreTrainedModel(PreTrainedModel):
305
+ """An abstract class to handle weights initialization and a simple interface
306
+ for downloading and loading pretrained models.
307
+ """
308
+
309
+ config_class = HelpingAIConfig
310
+ base_model_prefix = "transformer"
311
+ supports_gradient_checkpointing = True
312
+ _no_split_modules = ["DecoderLayer"]
313
+ _skip_keys_device_placement = "past_key_values"
314
+
315
+ def _init_weights(self, module: nn.Module):
316
+ """Initialize the weights"""
317
+ if isinstance(module, nn.Linear):
318
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
319
+ if module.bias is not None:
320
+ module.bias.data.zero_()
321
+ elif isinstance(module, nn.Embedding):
322
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
323
+ if module.padding_idx is not None:
324
+ module.weight.data[module.padding_idx].zero_()
325
+ elif isinstance(module, nn.LayerNorm):
326
+ module.bias.data.zero_()
327
+ module.weight.data.fill_(1.0)
328
+
329
+ def _set_gradient_checkpointing(self, module: nn.Module, value=False):
330
+ if isinstance(module, HelpingAIModel):
331
+ module.gradient_checkpointing = value
332
+
333
+
334
+ class HelpingAIModel(HelpingAIPreTrainedModel):
335
+ def __init__(self, config: HelpingAIConfig):
336
+ super().__init__(config)
337
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
338
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
339
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
340
+
341
+ self.gradient_checkpointing = False
342
+ # Initialize weights and apply final processing
343
+ self.post_init()
344
+
345
+ def get_input_embeddings(self):
346
+ return self.embed_tokens
347
+
348
+ def set_input_embeddings(self, value: nn.Module):
349
+ self.embed_tokens = value
350
+
351
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
352
+ def _prepare_decoder_attention_mask(
353
+ self,
354
+ attention_mask: torch.Tensor,
355
+ input_shape: torch.Size,
356
+ inputs_embeds: torch.Tensor,
357
+ past_key_values_length: int,
358
+ ):
359
+ # Create causal mask
360
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
361
+ combined_attention_mask = None
362
+ if input_shape[-1] > 1:
363
+ combined_attention_mask = _make_causal_mask(
364
+ input_shape,
365
+ inputs_embeds.dtype,
366
+ device=inputs_embeds.device,
367
+ past_key_values_length=past_key_values_length,
368
+ )
369
+
370
+ if attention_mask is not None:
371
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
372
+ expanded_attn_mask = _expand_mask(
373
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
374
+ ).to(inputs_embeds.device)
375
+ combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
376
+
377
+ return combined_attention_mask
378
+
379
+ def forward(
380
+ self,
381
+ input_ids: Optional[torch.LongTensor] = None,
382
+ attention_mask: Optional[torch.FloatTensor] = None,
383
+ position_ids: Optional[torch.LongTensor] = None,
384
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
385
+ inputs_embeds: Optional[torch.FloatTensor] = None,
386
+ use_cache: Optional[bool] = None,
387
+ output_attentions: Optional[bool] = None,
388
+ output_hidden_states: Optional[bool] = None,
389
+ return_dict: Optional[bool] = None,
390
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
391
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
392
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
393
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
394
+
395
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
396
+
397
+ # Retrieve input_ids and inputs_embeds
398
+ if input_ids is not None and inputs_embeds is not None:
399
+ raise ValueError(
400
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
401
+ )
402
+ elif input_ids is not None:
403
+ batch_size, seq_length = input_ids.shape
404
+ elif inputs_embeds is not None:
405
+ batch_size, seq_length, _ = inputs_embeds.shape
406
+ else:
407
+ raise ValueError(
408
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
409
+ )
410
+
411
+ seq_length_with_past = seq_length
412
+ past_key_values_length = 0
413
+
414
+ if past_key_values is not None:
415
+ past_key_values_length = past_key_values[0][0].shape[2]
416
+ seq_length_with_past = seq_length_with_past + past_key_values_length
417
+
418
+ if position_ids is None:
419
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
420
+ position_ids = torch.arange(
421
+ past_key_values_length,
422
+ seq_length + past_key_values_length,
423
+ dtype=torch.long,
424
+ device=device,
425
+ )
426
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
427
+ else:
428
+ position_ids = position_ids.view(-1, seq_length).long()
429
+
430
+ if inputs_embeds is None:
431
+ inputs_embeds = self.embed_tokens(input_ids)
432
+ # Embed positions
433
+ if attention_mask is None:
434
+ attention_mask = torch.ones(
435
+ (batch_size, seq_length_with_past),
436
+ dtype=torch.bool,
437
+ device=inputs_embeds.device,
438
+ )
439
+ attention_mask = self._prepare_decoder_attention_mask(
440
+ attention_mask,
441
+ (batch_size, seq_length),
442
+ inputs_embeds,
443
+ past_key_values_length,
444
+ )
445
+
446
+ hidden_states = inputs_embeds
447
+
448
+ if self.gradient_checkpointing and self.training:
449
+ if use_cache:
450
+ logger.warning(
451
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
452
+ )
453
+ use_cache = False
454
+
455
+ # Decoder layers
456
+ all_hidden_states = () if output_hidden_states else None
457
+ all_self_attns = () if output_attentions else None
458
+ next_decoder_cache = () if use_cache else None
459
+
460
+ for idx, decoder_layer in enumerate(self.layers):
461
+ if output_hidden_states:
462
+ all_hidden_states += (hidden_states,)
463
+
464
+ past_key_value = (
465
+ past_key_values[idx] if past_key_values is not None else None
466
+ )
467
+
468
+ if self.gradient_checkpointing and self.training:
469
+
470
+ def create_custom_forward(module):
471
+ def custom_forward(*inputs):
472
+ # None for past_key_value
473
+ return module(*inputs, past_key_value, output_attentions)
474
+
475
+ return custom_forward
476
+
477
+ layer_outputs = torch.utils.checkpoint.checkpoint(
478
+ create_custom_forward(decoder_layer),
479
+ hidden_states,
480
+ attention_mask,
481
+ position_ids,
482
+ )
483
+ else:
484
+ layer_outputs = decoder_layer(
485
+ hidden_states,
486
+ attention_mask=attention_mask,
487
+ position_ids=position_ids,
488
+ past_key_value=past_key_value,
489
+ output_attentions=output_attentions,
490
+ use_cache=use_cache,
491
+ )
492
+
493
+ hidden_states = layer_outputs[0]
494
+
495
+ if use_cache:
496
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
497
+
498
+ if output_attentions:
499
+ all_self_attns += (layer_outputs[1],)
500
+
501
+ hidden_states = self.norm(hidden_states)
502
+
503
+ # Add hidden states from the last decoder layer
504
+ if output_hidden_states:
505
+ all_hidden_states += (hidden_states,)
506
+
507
+ next_cache = next_decoder_cache if use_cache else None
508
+ if not return_dict:
509
+ return tuple(
510
+ v
511
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
512
+ if v is not None
513
+ )
514
+ return BaseModelOutputWithPast(
515
+ last_hidden_state=hidden_states,
516
+ past_key_values=next_cache,
517
+ hidden_states=all_hidden_states,
518
+ attentions=all_self_attns,
519
+ )
520
+
521
+
522
+ class HelpingAIForCausalLM(HelpingAIPreTrainedModel):
523
+ _tied_weights_keys = ["lm_head.weight"]
524
+
525
+ def __init__(self, config: HelpingAIConfig):
526
+ super().__init__(config)
527
+
528
+ self.model = HelpingAIModel(config)
529
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
530
+
531
+ # Initialize weights and apply final processing
532
+ self.post_init()
533
+
534
+ def get_input_embeddings(self):
535
+ return self.model.embed_tokens
536
+
537
+ def set_input_embeddings(self, value):
538
+ self.model.embed_tokens = value
539
+
540
+ def get_output_embeddings(self):
541
+ return self.lm_head
542
+
543
+ def set_output_embeddings(self, new_embeddings: nn.Module):
544
+ self.lm_head = new_embeddings
545
+
546
+ def get_decoder(self):
547
+ return self.transformer
548
+
549
+ def set_decoder(self, decoder):
550
+ self.transformer = decoder
551
+
552
+ def forward(
553
+ self,
554
+ input_ids: Optional[torch.LongTensor] = None,
555
+ attention_mask: Optional[torch.FloatTensor] = None,
556
+ position_ids: Optional[torch.LongTensor] = None,
557
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
558
+ inputs_embeds: Optional[torch.FloatTensor] = None,
559
+ labels: Optional[torch.LongTensor] = None,
560
+ use_cache: Optional[bool] = None,
561
+ output_attentions: Optional[bool] = None,
562
+ output_hidden_states: Optional[bool] = None,
563
+ return_dict: Optional[bool] = None,
564
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
565
+ output_attentions = (
566
+ output_attentions
567
+ if output_attentions is not None
568
+ else self.config.output_attentions
569
+ )
570
+ output_hidden_states = (
571
+ output_hidden_states
572
+ if output_hidden_states is not None
573
+ else self.config.output_hidden_states
574
+ )
575
+ return_dict = (
576
+ return_dict if return_dict is not None else self.config.use_return_dict
577
+ )
578
+
579
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
580
+ outputs = self.model(
581
+ input_ids,
582
+ attention_mask=attention_mask,
583
+ position_ids=position_ids,
584
+ past_key_values=past_key_values,
585
+ inputs_embeds=inputs_embeds,
586
+ use_cache=use_cache,
587
+ output_attentions=output_attentions,
588
+ output_hidden_states=output_hidden_states,
589
+ return_dict=return_dict,
590
+ )
591
+
592
+ hidden_states = outputs[0]
593
+ logits = self.lm_head(hidden_states).float()
594
+
595
+ loss = None
596
+ if labels is not None:
597
+ # Shift so that tokens < n predict n
598
+ shift_logits = logits[..., :-1, :].contiguous()
599
+ shift_labels = labels[..., 1:].contiguous()
600
+ # Flatten the tokens
601
+ loss_fct = CrossEntropyLoss()
602
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
603
+ shift_labels = shift_labels.view(-1)
604
+ # Enable model parallelism
605
+ shift_labels = shift_labels.to(shift_logits.device)
606
+ loss = loss_fct(shift_logits, shift_labels)
607
+
608
+ if not return_dict:
609
+ output = (logits,) + outputs[1:]
610
+ return (loss,) + output if loss is not None else output
611
+
612
+ return CausalLMOutputWithPast(
613
+ loss=loss,
614
+ logits=logits,
615
+ past_key_values=outputs.past_key_values,
616
+ hidden_states=outputs.hidden_states,
617
+ attentions=outputs.attentions,
618
+ )
619
+
620
+ def prepare_inputs_for_generation(
621
+ self,
622
+ input_ids,
623
+ past_key_values: Optional[torch.Tensor] = None,
624
+ attention_mask: Optional[torch.Tensor] = None,
625
+ inputs_embeds: Optional[torch.Tensor] = None,
626
+ **kwargs,
627
+ ):
628
+ # Trim decoder_input_ids if past is used
629
+ if past_key_values and past_key_values[0] is not None:
630
+ input_ids = input_ids[:, -1:]
631
+
632
+ position_ids = kwargs.get("position_ids", None)
633
+ if attention_mask is not None and position_ids is None:
634
+ # Create position_ids on the fly for batch generation
635
+ position_ids = attention_mask.long().cumsum(-1) - 1
636
+ position_ids.masked_fill_(attention_mask == 0, 1)
637
+ if past_key_values:
638
+ position_ids = position_ids[:, -1].unsqueeze(-1)
639
+
640
+ # If `inputs_embeds` are passed, we only want to use them in the 1st generation step
641
+ if inputs_embeds is not None and past_key_values is None:
642
+ model_inputs = {"inputs_embeds": inputs_embeds}
643
+ else:
644
+ model_inputs = {"input_ids": input_ids}
645
+
646
+ model_inputs.update(
647
+ {
648
+ "attention_mask": attention_mask,
649
+ "past_key_values": past_key_values,
650
+ "use_cache": kwargs.get("use_cache"),
651
+ "position_ids": position_ids,
652
+ }
653
+ )
654
+ return model_inputs
655
+
656
+ @staticmethod
657
+ def _reorder_cache(past_key_values, beam_idx):
658
+ reordered_past = ()
659
+ for layer_past in past_key_values:
660
+ reordered_past += (
661
+ tuple(
662
+ past_state.index_select(0, beam_idx.to(past_state.device))
663
+ for past_state in layer_past
664
+ ),
665
+ )
666
+ return reordered_past
667
+
668
+
669
+ HelpingAIConfig.register_for_auto_class()
670
+ HelpingAIForCausalLM.register_for_auto_class("AutoModelForCausalLM")
pytorch_model-00001-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca3187da2ba70772c77cab754eafd535b0e4a530c5c43ec3449257461ecd30d3
3
+ size 8837690076
pytorch_model-00002-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebc9777c81fbd62d2895775cf659f00f0cf6a66d3f65c5e00859ec28e64fa4f5
3
+ size 9865757318
pytorch_model-00003-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b474d55ae804d828ede1dfd59b90b494985d260f7aafcab711165d0060863b84
3
+ size 9865757318
pytorch_model-00004-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a472b3eb2e3a5c6a8d01594f3839ca802a641726b9761853aef72f943a0fdd54
3
+ size 9865757318
pytorch_model-00005-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fade6a15060368fbd037d9638945d71c853534f1ed87e48f6b0cce6663ea348
3
+ size 9865757318
pytorch_model-00006-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3861b788114ac983fec33c8a8f789ce0aac41f8d0c5d69c110abd462c85ea4c
3
+ size 9865757382
pytorch_model-00007-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56e4cd89630a2725e630b1e13e1db882203474bfcb92ace7620989c1d201104e
3
+ size 9865757382
pytorch_model-00008-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba7375b56a1535f88c5f1f488e37212b708369e8b98fbac039497e1b7286e656
3
+ size 9865757382
pytorch_model-00009-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7de2e69a9db40b2e2f2441da2cda4e3f90776d9e23850b7425625c491a255aad
3
+ size 9865757382
pytorch_model-00010-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70dee8587d56760414f1f6b5e28de93db450d46e31ef75efede83c3ea438bab4
3
+ size 9865757382
pytorch_model-00011-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:136b56084635f1c422cddb5185db34fb80866a84c7170a43cb40db631a230ac6
3
+ size 9865757382
pytorch_model-00012-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38fe8957ccaee533e54f97aa95b33eee1c7c2de10424c76142d48ad800de9103
3
+ size 9865757382
pytorch_model-00013-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e583bd86212872a58aba123e0cfd7f96d01186df1823e6e093ea4367c2d2cbd3
3
+ size 9865757382
pytorch_model-00014-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7f6c50bb9710c879a791d59974fbc5ce2fc4f5eae1a96f12ca15973bcab7640
3
+ size 9865757382
pytorch_model-00015-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bc99c13110b14e03e38e7af312c7aa3d5655dad89afdc6db872aa144fb07c39
3
+ size 9865757382
pytorch_model-00016-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d59dc96927dd17d1945eeaea31d97d5feaa6e3c3dd1b60c638d25a7dd0796bf
3
+ size 9865757382
pytorch_model-00017-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:162d15ec31369b932d37a6cd04c85bc546bd350f3235eb096c445587a913e370
3
+ size 9865757382
pytorch_model-00018-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:189949529ef7a5533fef059f86de583343e14e9ad8799d0ea67a51890b452cd7
3
+ size 9865757382
pytorch_model-00019-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:351623dc9b9131e771f7e995a8b02261547a2a4249f8d8ced7de291f370e6d84
3
+ size 9865757382
pytorch_model-00020-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:217f9ea1fc5ff5a7910ea9222ec70fc24a06b2ccfbfc69924c94555d40141986
3
+ size 9865757382
pytorch_model-00021-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d46df3ba9538a5790d2c35264af6516ee9357ba9760216b2d8ec057000b1316
3
+ size 9865757382
pytorch_model-00022-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a99aeb8cb6bfce134df868b787c4680439a21d9185add42ff45d067c624841ac
3
+ size 9865757382
pytorch_model-00023-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a46f4b50de561c80d3a882c7f8ed498231b89c36919da417d0675fceaf303e62
3
+ size 9865757382
pytorch_model-00024-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f65841392f00a806c3b4b0081befd1260f854cea1d60ab2d87939950b2b2e88
3
+ size 9865757382
pytorch_model-00025-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fac5c1abeb05511cf496f47984a0efcce929678bc01352eae240e988cfe15e52
3
+ size 9865757382
pytorch_model-00026-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a952fb468ce32332307880ad7a54deec7119608ce2d02e3556f85626a1d111
3
+ size 9865757382
pytorch_model-00027-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c331a3536db08191b2704dc78c01aeeb62207f2aaf4db0188d3fd4d4553ac96
3
+ size 9865757382
pytorch_model-00028-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c189d575771c8c9e96030f91e3c532ca006c04fc573dd4ac26399f1305e515c0
3
+ size 9865757382
pytorch_model-00029-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d9e5e6c448f8f6e4d8b76c08ccd43f00a28c819111b86b438578bd4793b809c
3
+ size 9865757382
pytorch_model-00030-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:666234aee85def980de53cbe63d86922e4371d14e13ba380bd665926cf16260e
3
+ size 9865757382
pytorch_model-00031-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d32da8fbe15f3a8dda294f63d4e1d210796e3a952fc0488c8ff4f2a09666235
3
+ size 9865757382
pytorch_model-00032-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53371c3c0a1e97ed02db8e5a83ab76a038a386724c10522bd05c1ceff9b37908
3
+ size 9865757382
pytorch_model-00033-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:647c442ff7fd4896fc2915f4e6f4bd85b12aa4663a5d5d6e1f56bf0b585c3434
3
+ size 9865757382
pytorch_model-00034-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf885237c29d7c83babd2684c9ada2a6227a025e56c3ab6b6d4e5583c47927ee
3
+ size 9865757382
pytorch_model-00035-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddb922a126dc39bfe52277d189b8dcb21e56ff50d557e7320b07897972fdd599
3
+ size 9865757382
pytorch_model-00036-of-00036.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b96d0d49263134b6ac99130ecef9500ba2eef11c89663362a0f59f39e3285838
3
+ size 8221416146
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 352494542848
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00001-of-00036.bin",
7
+ "transformer.h.0.input_layernorm.bias": "pytorch_model-00001-of-00036.bin",
8
+ "transformer.h.0.input_layernorm.weight": "pytorch_model-00001-of-00036.bin",
9
+ "transformer.h.0.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00036.bin",
10
+ "transformer.h.0.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00036.bin",
11
+ "transformer.h.0.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00036.bin",
12
+ "transformer.h.0.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00036.bin",
13
+ "transformer.h.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00036.bin",
14
+ "transformer.h.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00036.bin",
15
+ "transformer.h.0.self_attention.dense.bias": "pytorch_model-00001-of-00036.bin",
16
+ "transformer.h.0.self_attention.dense.weight": "pytorch_model-00001-of-00036.bin",
17
+ "transformer.h.0.self_attention.query_key_value.bias": "pytorch_model-00001-of-00036.bin",
18
+ "transformer.h.0.self_attention.query_key_value.weight": "pytorch_model-00001-of-00036.bin",
19
+ "transformer.h.1.input_layernorm.bias": "pytorch_model-00002-of-00036.bin",
20
+ "transformer.h.1.input_layernorm.weight": "pytorch_model-00002-of-00036.bin",
21
+ "transformer.h.1.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00036.bin",
22
+ "transformer.h.1.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00036.bin",
23
+ "transformer.h.1.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00036.bin",
24
+ "transformer.h.1.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00036.bin",
25
+ "transformer.h.1.post_attention_layernorm.bias": "pytorch_model-00002-of-00036.bin",
26
+ "transformer.h.1.post_attention_layernorm.weight": "pytorch_model-00002-of-00036.bin",
27
+ "transformer.h.1.self_attention.dense.bias": "pytorch_model-00002-of-00036.bin",
28
+ "transformer.h.1.self_attention.dense.weight": "pytorch_model-00002-of-00036.bin",
29
+ "transformer.h.1.self_attention.query_key_value.bias": "pytorch_model-00002-of-00036.bin",
30
+ "transformer.h.1.self_attention.query_key_value.weight": "pytorch_model-00002-of-00036.bin",
31
+ "transformer.h.10.input_layernorm.bias": "pytorch_model-00006-of-00036.bin",
32
+ "transformer.h.10.input_layernorm.weight": "pytorch_model-00006-of-00036.bin",
33
+ "transformer.h.10.mlp.dense_4h_to_h.bias": "pytorch_model-00007-of-00036.bin",
34
+ "transformer.h.10.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00036.bin",
35
+ "transformer.h.10.mlp.dense_h_to_4h.bias": "pytorch_model-00007-of-00036.bin",
36
+ "transformer.h.10.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00036.bin",
37
+ "transformer.h.10.post_attention_layernorm.bias": "pytorch_model-00006-of-00036.bin",
38
+ "transformer.h.10.post_attention_layernorm.weight": "pytorch_model-00006-of-00036.bin",
39
+ "transformer.h.10.self_attention.dense.bias": "pytorch_model-00006-of-00036.bin",
40
+ "transformer.h.10.self_attention.dense.weight": "pytorch_model-00006-of-00036.bin",
41
+ "transformer.h.10.self_attention.query_key_value.bias": "pytorch_model-00006-of-00036.bin",
42
+ "transformer.h.10.self_attention.query_key_value.weight": "pytorch_model-00006-of-00036.bin",
43
+ "transformer.h.11.input_layernorm.bias": "pytorch_model-00007-of-00036.bin",
44
+ "transformer.h.11.input_layernorm.weight": "pytorch_model-00007-of-00036.bin",
45
+ "transformer.h.11.mlp.dense_4h_to_h.bias": "pytorch_model-00007-of-00036.bin",
46
+ "transformer.h.11.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00036.bin",
47
+ "transformer.h.11.mlp.dense_h_to_4h.bias": "pytorch_model-00007-of-00036.bin",
48
+ "transformer.h.11.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00036.bin",
49
+ "transformer.h.11.post_attention_layernorm.bias": "pytorch_model-00007-of-00036.bin",
50
+ "transformer.h.11.post_attention_layernorm.weight": "pytorch_model-00007-of-00036.bin",
51
+ "transformer.h.11.self_attention.dense.bias": "pytorch_model-00007-of-00036.bin",
52
+ "transformer.h.11.self_attention.dense.weight": "pytorch_model-00007-of-00036.bin",
53
+ "transformer.h.11.self_attention.query_key_value.bias": "pytorch_model-00007-of-00036.bin",
54
+ "transformer.h.11.self_attention.query_key_value.weight": "pytorch_model-00007-of-00036.bin",
55
+ "transformer.h.12.input_layernorm.bias": "pytorch_model-00007-of-00036.bin",
56
+ "transformer.h.12.input_layernorm.weight": "pytorch_model-00007-of-00036.bin",
57
+ "transformer.h.12.mlp.dense_4h_to_h.bias": "pytorch_model-00008-of-00036.bin",
58
+ "transformer.h.12.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00036.bin",
59
+ "transformer.h.12.mlp.dense_h_to_4h.bias": "pytorch_model-00008-of-00036.bin",
60
+ "transformer.h.12.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00036.bin",
61
+ "transformer.h.12.post_attention_layernorm.bias": "pytorch_model-00007-of-00036.bin",
62
+ "transformer.h.12.post_attention_layernorm.weight": "pytorch_model-00007-of-00036.bin",
63
+ "transformer.h.12.self_attention.dense.bias": "pytorch_model-00007-of-00036.bin",
64
+ "transformer.h.12.self_attention.dense.weight": "pytorch_model-00007-of-00036.bin",
65
+ "transformer.h.12.self_attention.query_key_value.bias": "pytorch_model-00007-of-00036.bin",
66
+ "transformer.h.12.self_attention.query_key_value.weight": "pytorch_model-00007-of-00036.bin",
67
+ "transformer.h.13.input_layernorm.bias": "pytorch_model-00008-of-00036.bin",
68
+ "transformer.h.13.input_layernorm.weight": "pytorch_model-00008-of-00036.bin",
69
+ "transformer.h.13.mlp.dense_4h_to_h.bias": "pytorch_model-00008-of-00036.bin",
70
+ "transformer.h.13.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00036.bin",
71
+ "transformer.h.13.mlp.dense_h_to_4h.bias": "pytorch_model-00008-of-00036.bin",
72
+ "transformer.h.13.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00036.bin",
73
+ "transformer.h.13.post_attention_layernorm.bias": "pytorch_model-00008-of-00036.bin",
74
+ "transformer.h.13.post_attention_layernorm.weight": "pytorch_model-00008-of-00036.bin",
75
+ "transformer.h.13.self_attention.dense.bias": "pytorch_model-00008-of-00036.bin",
76
+ "transformer.h.13.self_attention.dense.weight": "pytorch_model-00008-of-00036.bin",
77
+ "transformer.h.13.self_attention.query_key_value.bias": "pytorch_model-00008-of-00036.bin",
78
+ "transformer.h.13.self_attention.query_key_value.weight": "pytorch_model-00008-of-00036.bin",
79
+ "transformer.h.14.input_layernorm.bias": "pytorch_model-00008-of-00036.bin",
80
+ "transformer.h.14.input_layernorm.weight": "pytorch_model-00008-of-00036.bin",
81
+ "transformer.h.14.mlp.dense_4h_to_h.bias": "pytorch_model-00009-of-00036.bin",
82
+ "transformer.h.14.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00036.bin",
83
+ "transformer.h.14.mlp.dense_h_to_4h.bias": "pytorch_model-00009-of-00036.bin",
84
+ "transformer.h.14.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00036.bin",
85
+ "transformer.h.14.post_attention_layernorm.bias": "pytorch_model-00008-of-00036.bin",
86
+ "transformer.h.14.post_attention_layernorm.weight": "pytorch_model-00008-of-00036.bin",
87
+ "transformer.h.14.self_attention.dense.bias": "pytorch_model-00008-of-00036.bin",
88
+ "transformer.h.14.self_attention.dense.weight": "pytorch_model-00008-of-00036.bin",
89
+ "transformer.h.14.self_attention.query_key_value.bias": "pytorch_model-00008-of-00036.bin",
90
+ "transformer.h.14.self_attention.query_key_value.weight": "pytorch_model-00008-of-00036.bin",
91
+ "transformer.h.15.input_layernorm.bias": "pytorch_model-00009-of-00036.bin",
92
+ "transformer.h.15.input_layernorm.weight": "pytorch_model-00009-of-00036.bin",
93
+ "transformer.h.15.mlp.dense_4h_to_h.bias": "pytorch_model-00009-of-00036.bin",
94
+ "transformer.h.15.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00036.bin",
95
+ "transformer.h.15.mlp.dense_h_to_4h.bias": "pytorch_model-00009-of-00036.bin",
96
+ "transformer.h.15.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00036.bin",
97
+ "transformer.h.15.post_attention_layernorm.bias": "pytorch_model-00009-of-00036.bin",
98
+ "transformer.h.15.post_attention_layernorm.weight": "pytorch_model-00009-of-00036.bin",
99
+ "transformer.h.15.self_attention.dense.bias": "pytorch_model-00009-of-00036.bin",
100
+ "transformer.h.15.self_attention.dense.weight": "pytorch_model-00009-of-00036.bin",
101
+ "transformer.h.15.self_attention.query_key_value.bias": "pytorch_model-00009-of-00036.bin",
102
+ "transformer.h.15.self_attention.query_key_value.weight": "pytorch_model-00009-of-00036.bin",
103
+ "transformer.h.16.input_layernorm.bias": "pytorch_model-00009-of-00036.bin",
104
+ "transformer.h.16.input_layernorm.weight": "pytorch_model-00009-of-00036.bin",
105
+ "transformer.h.16.mlp.dense_4h_to_h.bias": "pytorch_model-00010-of-00036.bin",
106
+ "transformer.h.16.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00036.bin",
107
+ "transformer.h.16.mlp.dense_h_to_4h.bias": "pytorch_model-00010-of-00036.bin",
108
+ "transformer.h.16.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00036.bin",
109
+ "transformer.h.16.post_attention_layernorm.bias": "pytorch_model-00009-of-00036.bin",
110
+ "transformer.h.16.post_attention_layernorm.weight": "pytorch_model-00009-of-00036.bin",
111
+ "transformer.h.16.self_attention.dense.bias": "pytorch_model-00009-of-00036.bin",
112
+ "transformer.h.16.self_attention.dense.weight": "pytorch_model-00009-of-00036.bin",
113
+ "transformer.h.16.self_attention.query_key_value.bias": "pytorch_model-00009-of-00036.bin",
114
+ "transformer.h.16.self_attention.query_key_value.weight": "pytorch_model-00009-of-00036.bin",
115
+ "transformer.h.17.input_layernorm.bias": "pytorch_model-00010-of-00036.bin",
116
+ "transformer.h.17.input_layernorm.weight": "pytorch_model-00010-of-00036.bin",
117
+ "transformer.h.17.mlp.dense_4h_to_h.bias": "pytorch_model-00010-of-00036.bin",
118
+ "transformer.h.17.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00036.bin",
119
+ "transformer.h.17.mlp.dense_h_to_4h.bias": "pytorch_model-00010-of-00036.bin",
120
+ "transformer.h.17.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00036.bin",
121
+ "transformer.h.17.post_attention_layernorm.bias": "pytorch_model-00010-of-00036.bin",
122
+ "transformer.h.17.post_attention_layernorm.weight": "pytorch_model-00010-of-00036.bin",
123
+ "transformer.h.17.self_attention.dense.bias": "pytorch_model-00010-of-00036.bin",
124
+ "transformer.h.17.self_attention.dense.weight": "pytorch_model-00010-of-00036.bin",
125
+ "transformer.h.17.self_attention.query_key_value.bias": "pytorch_model-00010-of-00036.bin",
126
+ "transformer.h.17.self_attention.query_key_value.weight": "pytorch_model-00010-of-00036.bin",
127
+ "transformer.h.18.input_layernorm.bias": "pytorch_model-00010-of-00036.bin",
128
+ "transformer.h.18.input_layernorm.weight": "pytorch_model-00010-of-00036.bin",
129
+ "transformer.h.18.mlp.dense_4h_to_h.bias": "pytorch_model-00011-of-00036.bin",
130
+ "transformer.h.18.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00036.bin",
131
+ "transformer.h.18.mlp.dense_h_to_4h.bias": "pytorch_model-00011-of-00036.bin",
132
+ "transformer.h.18.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00036.bin",
133
+ "transformer.h.18.post_attention_layernorm.bias": "pytorch_model-00010-of-00036.bin",
134
+ "transformer.h.18.post_attention_layernorm.weight": "pytorch_model-00010-of-00036.bin",
135
+ "transformer.h.18.self_attention.dense.bias": "pytorch_model-00010-of-00036.bin",
136
+ "transformer.h.18.self_attention.dense.weight": "pytorch_model-00010-of-00036.bin",
137
+ "transformer.h.18.self_attention.query_key_value.bias": "pytorch_model-00010-of-00036.bin",
138
+ "transformer.h.18.self_attention.query_key_value.weight": "pytorch_model-00010-of-00036.bin",
139
+ "transformer.h.19.input_layernorm.bias": "pytorch_model-00011-of-00036.bin",
140
+ "transformer.h.19.input_layernorm.weight": "pytorch_model-00011-of-00036.bin",
141
+ "transformer.h.19.mlp.dense_4h_to_h.bias": "pytorch_model-00011-of-00036.bin",
142
+ "transformer.h.19.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00036.bin",
143
+ "transformer.h.19.mlp.dense_h_to_4h.bias": "pytorch_model-00011-of-00036.bin",
144
+ "transformer.h.19.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00036.bin",
145
+ "transformer.h.19.post_attention_layernorm.bias": "pytorch_model-00011-of-00036.bin",
146
+ "transformer.h.19.post_attention_layernorm.weight": "pytorch_model-00011-of-00036.bin",
147
+ "transformer.h.19.self_attention.dense.bias": "pytorch_model-00011-of-00036.bin",
148
+ "transformer.h.19.self_attention.dense.weight": "pytorch_model-00011-of-00036.bin",
149
+ "transformer.h.19.self_attention.query_key_value.bias": "pytorch_model-00011-of-00036.bin",
150
+ "transformer.h.19.self_attention.query_key_value.weight": "pytorch_model-00011-of-00036.bin",
151
+ "transformer.h.2.input_layernorm.bias": "pytorch_model-00002-of-00036.bin",
152
+ "transformer.h.2.input_layernorm.weight": "pytorch_model-00002-of-00036.bin",
153
+ "transformer.h.2.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00036.bin",
154
+ "transformer.h.2.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00036.bin",
155
+ "transformer.h.2.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00036.bin",
156
+ "transformer.h.2.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00036.bin",
157
+ "transformer.h.2.post_attention_layernorm.bias": "pytorch_model-00002-of-00036.bin",
158
+ "transformer.h.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00036.bin",
159
+ "transformer.h.2.self_attention.dense.bias": "pytorch_model-00002-of-00036.bin",
160
+ "transformer.h.2.self_attention.dense.weight": "pytorch_model-00002-of-00036.bin",
161
+ "transformer.h.2.self_attention.query_key_value.bias": "pytorch_model-00002-of-00036.bin",
162
+ "transformer.h.2.self_attention.query_key_value.weight": "pytorch_model-00002-of-00036.bin",
163
+ "transformer.h.20.input_layernorm.bias": "pytorch_model-00011-of-00036.bin",
164
+ "transformer.h.20.input_layernorm.weight": "pytorch_model-00011-of-00036.bin",
165
+ "transformer.h.20.mlp.dense_4h_to_h.bias": "pytorch_model-00012-of-00036.bin",
166
+ "transformer.h.20.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00036.bin",
167
+ "transformer.h.20.mlp.dense_h_to_4h.bias": "pytorch_model-00012-of-00036.bin",
168
+ "transformer.h.20.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00036.bin",
169
+ "transformer.h.20.post_attention_layernorm.bias": "pytorch_model-00011-of-00036.bin",
170
+ "transformer.h.20.post_attention_layernorm.weight": "pytorch_model-00011-of-00036.bin",
171
+ "transformer.h.20.self_attention.dense.bias": "pytorch_model-00011-of-00036.bin",
172
+ "transformer.h.20.self_attention.dense.weight": "pytorch_model-00011-of-00036.bin",
173
+ "transformer.h.20.self_attention.query_key_value.bias": "pytorch_model-00011-of-00036.bin",
174
+ "transformer.h.20.self_attention.query_key_value.weight": "pytorch_model-00011-of-00036.bin",
175
+ "transformer.h.21.input_layernorm.bias": "pytorch_model-00012-of-00036.bin",
176
+ "transformer.h.21.input_layernorm.weight": "pytorch_model-00012-of-00036.bin",
177
+ "transformer.h.21.mlp.dense_4h_to_h.bias": "pytorch_model-00012-of-00036.bin",
178
+ "transformer.h.21.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00036.bin",
179
+ "transformer.h.21.mlp.dense_h_to_4h.bias": "pytorch_model-00012-of-00036.bin",
180
+ "transformer.h.21.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00036.bin",
181
+ "transformer.h.21.post_attention_layernorm.bias": "pytorch_model-00012-of-00036.bin",
182
+ "transformer.h.21.post_attention_layernorm.weight": "pytorch_model-00012-of-00036.bin",
183
+ "transformer.h.21.self_attention.dense.bias": "pytorch_model-00012-of-00036.bin",
184
+ "transformer.h.21.self_attention.dense.weight": "pytorch_model-00012-of-00036.bin",
185
+ "transformer.h.21.self_attention.query_key_value.bias": "pytorch_model-00012-of-00036.bin",
186
+ "transformer.h.21.self_attention.query_key_value.weight": "pytorch_model-00012-of-00036.bin",
187
+ "transformer.h.22.input_layernorm.bias": "pytorch_model-00012-of-00036.bin",
188
+ "transformer.h.22.input_layernorm.weight": "pytorch_model-00012-of-00036.bin",
189
+ "transformer.h.22.mlp.dense_4h_to_h.bias": "pytorch_model-00013-of-00036.bin",
190
+ "transformer.h.22.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00036.bin",
191
+ "transformer.h.22.mlp.dense_h_to_4h.bias": "pytorch_model-00013-of-00036.bin",
192
+ "transformer.h.22.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00036.bin",
193
+ "transformer.h.22.post_attention_layernorm.bias": "pytorch_model-00012-of-00036.bin",
194
+ "transformer.h.22.post_attention_layernorm.weight": "pytorch_model-00012-of-00036.bin",
195
+ "transformer.h.22.self_attention.dense.bias": "pytorch_model-00012-of-00036.bin",
196
+ "transformer.h.22.self_attention.dense.weight": "pytorch_model-00012-of-00036.bin",
197
+ "transformer.h.22.self_attention.query_key_value.bias": "pytorch_model-00012-of-00036.bin",
198
+ "transformer.h.22.self_attention.query_key_value.weight": "pytorch_model-00012-of-00036.bin",
199
+ "transformer.h.23.input_layernorm.bias": "pytorch_model-00013-of-00036.bin",
200
+ "transformer.h.23.input_layernorm.weight": "pytorch_model-00013-of-00036.bin",
201
+ "transformer.h.23.mlp.dense_4h_to_h.bias": "pytorch_model-00013-of-00036.bin",
202
+ "transformer.h.23.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00036.bin",
203
+ "transformer.h.23.mlp.dense_h_to_4h.bias": "pytorch_model-00013-of-00036.bin",
204
+ "transformer.h.23.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00036.bin",
205
+ "transformer.h.23.post_attention_layernorm.bias": "pytorch_model-00013-of-00036.bin",
206
+ "transformer.h.23.post_attention_layernorm.weight": "pytorch_model-00013-of-00036.bin",
207
+ "transformer.h.23.self_attention.dense.bias": "pytorch_model-00013-of-00036.bin",
208
+ "transformer.h.23.self_attention.dense.weight": "pytorch_model-00013-of-00036.bin",
209
+ "transformer.h.23.self_attention.query_key_value.bias": "pytorch_model-00013-of-00036.bin",
210
+ "transformer.h.23.self_attention.query_key_value.weight": "pytorch_model-00013-of-00036.bin",
211
+ "transformer.h.24.input_layernorm.bias": "pytorch_model-00013-of-00036.bin",
212
+ "transformer.h.24.input_layernorm.weight": "pytorch_model-00013-of-00036.bin",
213
+ "transformer.h.24.mlp.dense_4h_to_h.bias": "pytorch_model-00014-of-00036.bin",
214
+ "transformer.h.24.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00036.bin",
215
+ "transformer.h.24.mlp.dense_h_to_4h.bias": "pytorch_model-00014-of-00036.bin",
216
+ "transformer.h.24.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00036.bin",
217
+ "transformer.h.24.post_attention_layernorm.bias": "pytorch_model-00013-of-00036.bin",
218
+ "transformer.h.24.post_attention_layernorm.weight": "pytorch_model-00013-of-00036.bin",
219
+ "transformer.h.24.self_attention.dense.bias": "pytorch_model-00013-of-00036.bin",
220
+ "transformer.h.24.self_attention.dense.weight": "pytorch_model-00013-of-00036.bin",
221
+ "transformer.h.24.self_attention.query_key_value.bias": "pytorch_model-00013-of-00036.bin",
222
+ "transformer.h.24.self_attention.query_key_value.weight": "pytorch_model-00013-of-00036.bin",
223
+ "transformer.h.25.input_layernorm.bias": "pytorch_model-00014-of-00036.bin",
224
+ "transformer.h.25.input_layernorm.weight": "pytorch_model-00014-of-00036.bin",
225
+ "transformer.h.25.mlp.dense_4h_to_h.bias": "pytorch_model-00014-of-00036.bin",
226
+ "transformer.h.25.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00036.bin",
227
+ "transformer.h.25.mlp.dense_h_to_4h.bias": "pytorch_model-00014-of-00036.bin",
228
+ "transformer.h.25.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00036.bin",
229
+ "transformer.h.25.post_attention_layernorm.bias": "pytorch_model-00014-of-00036.bin",
230
+ "transformer.h.25.post_attention_layernorm.weight": "pytorch_model-00014-of-00036.bin",
231
+ "transformer.h.25.self_attention.dense.bias": "pytorch_model-00014-of-00036.bin",
232
+ "transformer.h.25.self_attention.dense.weight": "pytorch_model-00014-of-00036.bin",
233
+ "transformer.h.25.self_attention.query_key_value.bias": "pytorch_model-00014-of-00036.bin",
234
+ "transformer.h.25.self_attention.query_key_value.weight": "pytorch_model-00014-of-00036.bin",
235
+ "transformer.h.26.input_layernorm.bias": "pytorch_model-00014-of-00036.bin",
236
+ "transformer.h.26.input_layernorm.weight": "pytorch_model-00014-of-00036.bin",
237
+ "transformer.h.26.mlp.dense_4h_to_h.bias": "pytorch_model-00015-of-00036.bin",
238
+ "transformer.h.26.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00036.bin",
239
+ "transformer.h.26.mlp.dense_h_to_4h.bias": "pytorch_model-00015-of-00036.bin",
240
+ "transformer.h.26.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00036.bin",
241
+ "transformer.h.26.post_attention_layernorm.bias": "pytorch_model-00014-of-00036.bin",
242
+ "transformer.h.26.post_attention_layernorm.weight": "pytorch_model-00014-of-00036.bin",
243
+ "transformer.h.26.self_attention.dense.bias": "pytorch_model-00014-of-00036.bin",
244
+ "transformer.h.26.self_attention.dense.weight": "pytorch_model-00014-of-00036.bin",
245
+ "transformer.h.26.self_attention.query_key_value.bias": "pytorch_model-00014-of-00036.bin",
246
+ "transformer.h.26.self_attention.query_key_value.weight": "pytorch_model-00014-of-00036.bin",
247
+ "transformer.h.27.input_layernorm.bias": "pytorch_model-00015-of-00036.bin",
248
+ "transformer.h.27.input_layernorm.weight": "pytorch_model-00015-of-00036.bin",
249
+ "transformer.h.27.mlp.dense_4h_to_h.bias": "pytorch_model-00015-of-00036.bin",
250
+ "transformer.h.27.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00036.bin",
251
+ "transformer.h.27.mlp.dense_h_to_4h.bias": "pytorch_model-00015-of-00036.bin",
252
+ "transformer.h.27.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00036.bin",
253
+ "transformer.h.27.post_attention_layernorm.bias": "pytorch_model-00015-of-00036.bin",
254
+ "transformer.h.27.post_attention_layernorm.weight": "pytorch_model-00015-of-00036.bin",
255
+ "transformer.h.27.self_attention.dense.bias": "pytorch_model-00015-of-00036.bin",
256
+ "transformer.h.27.self_attention.dense.weight": "pytorch_model-00015-of-00036.bin",
257
+ "transformer.h.27.self_attention.query_key_value.bias": "pytorch_model-00015-of-00036.bin",
258
+ "transformer.h.27.self_attention.query_key_value.weight": "pytorch_model-00015-of-00036.bin",
259
+ "transformer.h.28.input_layernorm.bias": "pytorch_model-00015-of-00036.bin",
260
+ "transformer.h.28.input_layernorm.weight": "pytorch_model-00015-of-00036.bin",
261
+ "transformer.h.28.mlp.dense_4h_to_h.bias": "pytorch_model-00016-of-00036.bin",
262
+ "transformer.h.28.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00036.bin",
263
+ "transformer.h.28.mlp.dense_h_to_4h.bias": "pytorch_model-00016-of-00036.bin",
264
+ "transformer.h.28.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00036.bin",
265
+ "transformer.h.28.post_attention_layernorm.bias": "pytorch_model-00015-of-00036.bin",
266
+ "transformer.h.28.post_attention_layernorm.weight": "pytorch_model-00015-of-00036.bin",
267
+ "transformer.h.28.self_attention.dense.bias": "pytorch_model-00015-of-00036.bin",
268
+ "transformer.h.28.self_attention.dense.weight": "pytorch_model-00015-of-00036.bin",
269
+ "transformer.h.28.self_attention.query_key_value.bias": "pytorch_model-00015-of-00036.bin",
270
+ "transformer.h.28.self_attention.query_key_value.weight": "pytorch_model-00015-of-00036.bin",
271
+ "transformer.h.29.input_layernorm.bias": "pytorch_model-00016-of-00036.bin",
272
+ "transformer.h.29.input_layernorm.weight": "pytorch_model-00016-of-00036.bin",
273
+ "transformer.h.29.mlp.dense_4h_to_h.bias": "pytorch_model-00016-of-00036.bin",
274
+ "transformer.h.29.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00036.bin",
275
+ "transformer.h.29.mlp.dense_h_to_4h.bias": "pytorch_model-00016-of-00036.bin",
276
+ "transformer.h.29.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00036.bin",
277
+ "transformer.h.29.post_attention_layernorm.bias": "pytorch_model-00016-of-00036.bin",
278
+ "transformer.h.29.post_attention_layernorm.weight": "pytorch_model-00016-of-00036.bin",
279
+ "transformer.h.29.self_attention.dense.bias": "pytorch_model-00016-of-00036.bin",
280
+ "transformer.h.29.self_attention.dense.weight": "pytorch_model-00016-of-00036.bin",
281
+ "transformer.h.29.self_attention.query_key_value.bias": "pytorch_model-00016-of-00036.bin",
282
+ "transformer.h.29.self_attention.query_key_value.weight": "pytorch_model-00016-of-00036.bin",
283
+ "transformer.h.3.input_layernorm.bias": "pytorch_model-00003-of-00036.bin",
284
+ "transformer.h.3.input_layernorm.weight": "pytorch_model-00003-of-00036.bin",
285
+ "transformer.h.3.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00036.bin",
286
+ "transformer.h.3.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00036.bin",
287
+ "transformer.h.3.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00036.bin",
288
+ "transformer.h.3.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00036.bin",
289
+ "transformer.h.3.post_attention_layernorm.bias": "pytorch_model-00003-of-00036.bin",
290
+ "transformer.h.3.post_attention_layernorm.weight": "pytorch_model-00003-of-00036.bin",
291
+ "transformer.h.3.self_attention.dense.bias": "pytorch_model-00003-of-00036.bin",
292
+ "transformer.h.3.self_attention.dense.weight": "pytorch_model-00003-of-00036.bin",
293
+ "transformer.h.3.self_attention.query_key_value.bias": "pytorch_model-00003-of-00036.bin",
294
+ "transformer.h.3.self_attention.query_key_value.weight": "pytorch_model-00003-of-00036.bin",
295
+ "transformer.h.30.input_layernorm.bias": "pytorch_model-00016-of-00036.bin",
296
+ "transformer.h.30.input_layernorm.weight": "pytorch_model-00016-of-00036.bin",
297
+ "transformer.h.30.mlp.dense_4h_to_h.bias": "pytorch_model-00017-of-00036.bin",
298
+ "transformer.h.30.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00036.bin",
299
+ "transformer.h.30.mlp.dense_h_to_4h.bias": "pytorch_model-00017-of-00036.bin",
300
+ "transformer.h.30.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00036.bin",
301
+ "transformer.h.30.post_attention_layernorm.bias": "pytorch_model-00016-of-00036.bin",
302
+ "transformer.h.30.post_attention_layernorm.weight": "pytorch_model-00016-of-00036.bin",
303
+ "transformer.h.30.self_attention.dense.bias": "pytorch_model-00016-of-00036.bin",
304
+ "transformer.h.30.self_attention.dense.weight": "pytorch_model-00016-of-00036.bin",
305
+ "transformer.h.30.self_attention.query_key_value.bias": "pytorch_model-00016-of-00036.bin",
306
+ "transformer.h.30.self_attention.query_key_value.weight": "pytorch_model-00016-of-00036.bin",
307
+ "transformer.h.31.input_layernorm.bias": "pytorch_model-00017-of-00036.bin",
308
+ "transformer.h.31.input_layernorm.weight": "pytorch_model-00017-of-00036.bin",
309
+ "transformer.h.31.mlp.dense_4h_to_h.bias": "pytorch_model-00017-of-00036.bin",
310
+ "transformer.h.31.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00036.bin",
311
+ "transformer.h.31.mlp.dense_h_to_4h.bias": "pytorch_model-00017-of-00036.bin",
312
+ "transformer.h.31.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00036.bin",
313
+ "transformer.h.31.post_attention_layernorm.bias": "pytorch_model-00017-of-00036.bin",
314
+ "transformer.h.31.post_attention_layernorm.weight": "pytorch_model-00017-of-00036.bin",
315
+ "transformer.h.31.self_attention.dense.bias": "pytorch_model-00017-of-00036.bin",
316
+ "transformer.h.31.self_attention.dense.weight": "pytorch_model-00017-of-00036.bin",
317
+ "transformer.h.31.self_attention.query_key_value.bias": "pytorch_model-00017-of-00036.bin",
318
+ "transformer.h.31.self_attention.query_key_value.weight": "pytorch_model-00017-of-00036.bin",
319
+ "transformer.h.32.input_layernorm.bias": "pytorch_model-00017-of-00036.bin",
320
+ "transformer.h.32.input_layernorm.weight": "pytorch_model-00017-of-00036.bin",
321
+ "transformer.h.32.mlp.dense_4h_to_h.bias": "pytorch_model-00018-of-00036.bin",
322
+ "transformer.h.32.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00036.bin",
323
+ "transformer.h.32.mlp.dense_h_to_4h.bias": "pytorch_model-00018-of-00036.bin",
324
+ "transformer.h.32.mlp.dense_h_to_4h.weight": "pytorch_model-00018-of-00036.bin",
325
+ "transformer.h.32.post_attention_layernorm.bias": "pytorch_model-00017-of-00036.bin",
326
+ "transformer.h.32.post_attention_layernorm.weight": "pytorch_model-00017-of-00036.bin",
327
+ "transformer.h.32.self_attention.dense.bias": "pytorch_model-00017-of-00036.bin",
328
+ "transformer.h.32.self_attention.dense.weight": "pytorch_model-00017-of-00036.bin",
329
+ "transformer.h.32.self_attention.query_key_value.bias": "pytorch_model-00017-of-00036.bin",
330
+ "transformer.h.32.self_attention.query_key_value.weight": "pytorch_model-00017-of-00036.bin",
331
+ "transformer.h.33.input_layernorm.bias": "pytorch_model-00018-of-00036.bin",
332
+ "transformer.h.33.input_layernorm.weight": "pytorch_model-00018-of-00036.bin",
333
+ "transformer.h.33.mlp.dense_4h_to_h.bias": "pytorch_model-00018-of-00036.bin",
334
+ "transformer.h.33.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00036.bin",
335
+ "transformer.h.33.mlp.dense_h_to_4h.bias": "pytorch_model-00018-of-00036.bin",
336
+ "transformer.h.33.mlp.dense_h_to_4h.weight": "pytorch_model-00018-of-00036.bin",
337
+ "transformer.h.33.post_attention_layernorm.bias": "pytorch_model-00018-of-00036.bin",
338
+ "transformer.h.33.post_attention_layernorm.weight": "pytorch_model-00018-of-00036.bin",
339
+ "transformer.h.33.self_attention.dense.bias": "pytorch_model-00018-of-00036.bin",
340
+ "transformer.h.33.self_attention.dense.weight": "pytorch_model-00018-of-00036.bin",
341
+ "transformer.h.33.self_attention.query_key_value.bias": "pytorch_model-00018-of-00036.bin",
342
+ "transformer.h.33.self_attention.query_key_value.weight": "pytorch_model-00018-of-00036.bin",
343
+ "transformer.h.34.input_layernorm.bias": "pytorch_model-00018-of-00036.bin",
344
+ "transformer.h.34.input_layernorm.weight": "pytorch_model-00018-of-00036.bin",
345
+ "transformer.h.34.mlp.dense_4h_to_h.bias": "pytorch_model-00019-of-00036.bin",
346
+ "transformer.h.34.mlp.dense_4h_to_h.weight": "pytorch_model-00019-of-00036.bin",
347
+ "transformer.h.34.mlp.dense_h_to_4h.bias": "pytorch_model-00019-of-00036.bin",
348
+ "transformer.h.34.mlp.dense_h_to_4h.weight": "pytorch_model-00019-of-00036.bin",
349
+ "transformer.h.34.post_attention_layernorm.bias": "pytorch_model-00018-of-00036.bin",
350
+ "transformer.h.34.post_attention_layernorm.weight": "pytorch_model-00018-of-00036.bin",
351
+ "transformer.h.34.self_attention.dense.bias": "pytorch_model-00018-of-00036.bin",
352
+ "transformer.h.34.self_attention.dense.weight": "pytorch_model-00018-of-00036.bin",
353
+ "transformer.h.34.self_attention.query_key_value.bias": "pytorch_model-00018-of-00036.bin",
354
+ "transformer.h.34.self_attention.query_key_value.weight": "pytorch_model-00018-of-00036.bin",
355
+ "transformer.h.35.input_layernorm.bias": "pytorch_model-00019-of-00036.bin",
356
+ "transformer.h.35.input_layernorm.weight": "pytorch_model-00019-of-00036.bin",
357
+ "transformer.h.35.mlp.dense_4h_to_h.bias": "pytorch_model-00019-of-00036.bin",
358
+ "transformer.h.35.mlp.dense_4h_to_h.weight": "pytorch_model-00019-of-00036.bin",
359
+ "transformer.h.35.mlp.dense_h_to_4h.bias": "pytorch_model-00019-of-00036.bin",
360
+ "transformer.h.35.mlp.dense_h_to_4h.weight": "pytorch_model-00019-of-00036.bin",
361
+ "transformer.h.35.post_attention_layernorm.bias": "pytorch_model-00019-of-00036.bin",
362
+ "transformer.h.35.post_attention_layernorm.weight": "pytorch_model-00019-of-00036.bin",
363
+ "transformer.h.35.self_attention.dense.bias": "pytorch_model-00019-of-00036.bin",
364
+ "transformer.h.35.self_attention.dense.weight": "pytorch_model-00019-of-00036.bin",
365
+ "transformer.h.35.self_attention.query_key_value.bias": "pytorch_model-00019-of-00036.bin",
366
+ "transformer.h.35.self_attention.query_key_value.weight": "pytorch_model-00019-of-00036.bin",
367
+ "transformer.h.36.input_layernorm.bias": "pytorch_model-00019-of-00036.bin",
368
+ "transformer.h.36.input_layernorm.weight": "pytorch_model-00019-of-00036.bin",
369
+ "transformer.h.36.mlp.dense_4h_to_h.bias": "pytorch_model-00020-of-00036.bin",
370
+ "transformer.h.36.mlp.dense_4h_to_h.weight": "pytorch_model-00020-of-00036.bin",
371
+ "transformer.h.36.mlp.dense_h_to_4h.bias": "pytorch_model-00020-of-00036.bin",
372
+ "transformer.h.36.mlp.dense_h_to_4h.weight": "pytorch_model-00020-of-00036.bin",
373
+ "transformer.h.36.post_attention_layernorm.bias": "pytorch_model-00019-of-00036.bin",
374
+ "transformer.h.36.post_attention_layernorm.weight": "pytorch_model-00019-of-00036.bin",
375
+ "transformer.h.36.self_attention.dense.bias": "pytorch_model-00019-of-00036.bin",
376
+ "transformer.h.36.self_attention.dense.weight": "pytorch_model-00019-of-00036.bin",
377
+ "transformer.h.36.self_attention.query_key_value.bias": "pytorch_model-00019-of-00036.bin",
378
+ "transformer.h.36.self_attention.query_key_value.weight": "pytorch_model-00019-of-00036.bin",
379
+ "transformer.h.37.input_layernorm.bias": "pytorch_model-00020-of-00036.bin",
380
+ "transformer.h.37.input_layernorm.weight": "pytorch_model-00020-of-00036.bin",
381
+ "transformer.h.37.mlp.dense_4h_to_h.bias": "pytorch_model-00020-of-00036.bin",
382
+ "transformer.h.37.mlp.dense_4h_to_h.weight": "pytorch_model-00020-of-00036.bin",
383
+ "transformer.h.37.mlp.dense_h_to_4h.bias": "pytorch_model-00020-of-00036.bin",
384
+ "transformer.h.37.mlp.dense_h_to_4h.weight": "pytorch_model-00020-of-00036.bin",
385
+ "transformer.h.37.post_attention_layernorm.bias": "pytorch_model-00020-of-00036.bin",
386
+ "transformer.h.37.post_attention_layernorm.weight": "pytorch_model-00020-of-00036.bin",
387
+ "transformer.h.37.self_attention.dense.bias": "pytorch_model-00020-of-00036.bin",
388
+ "transformer.h.37.self_attention.dense.weight": "pytorch_model-00020-of-00036.bin",
389
+ "transformer.h.37.self_attention.query_key_value.bias": "pytorch_model-00020-of-00036.bin",
390
+ "transformer.h.37.self_attention.query_key_value.weight": "pytorch_model-00020-of-00036.bin",
391
+ "transformer.h.38.input_layernorm.bias": "pytorch_model-00020-of-00036.bin",
392
+ "transformer.h.38.input_layernorm.weight": "pytorch_model-00020-of-00036.bin",
393
+ "transformer.h.38.mlp.dense_4h_to_h.bias": "pytorch_model-00021-of-00036.bin",
394
+ "transformer.h.38.mlp.dense_4h_to_h.weight": "pytorch_model-00021-of-00036.bin",
395
+ "transformer.h.38.mlp.dense_h_to_4h.bias": "pytorch_model-00021-of-00036.bin",
396
+ "transformer.h.38.mlp.dense_h_to_4h.weight": "pytorch_model-00021-of-00036.bin",
397
+ "transformer.h.38.post_attention_layernorm.bias": "pytorch_model-00020-of-00036.bin",
398
+ "transformer.h.38.post_attention_layernorm.weight": "pytorch_model-00020-of-00036.bin",
399
+ "transformer.h.38.self_attention.dense.bias": "pytorch_model-00020-of-00036.bin",
400
+ "transformer.h.38.self_attention.dense.weight": "pytorch_model-00020-of-00036.bin",
401
+ "transformer.h.38.self_attention.query_key_value.bias": "pytorch_model-00020-of-00036.bin",
402
+ "transformer.h.38.self_attention.query_key_value.weight": "pytorch_model-00020-of-00036.bin",
403
+ "transformer.h.39.input_layernorm.bias": "pytorch_model-00021-of-00036.bin",
404
+ "transformer.h.39.input_layernorm.weight": "pytorch_model-00021-of-00036.bin",
405
+ "transformer.h.39.mlp.dense_4h_to_h.bias": "pytorch_model-00021-of-00036.bin",
406
+ "transformer.h.39.mlp.dense_4h_to_h.weight": "pytorch_model-00021-of-00036.bin",
407
+ "transformer.h.39.mlp.dense_h_to_4h.bias": "pytorch_model-00021-of-00036.bin",
408
+ "transformer.h.39.mlp.dense_h_to_4h.weight": "pytorch_model-00021-of-00036.bin",
409
+ "transformer.h.39.post_attention_layernorm.bias": "pytorch_model-00021-of-00036.bin",
410
+ "transformer.h.39.post_attention_layernorm.weight": "pytorch_model-00021-of-00036.bin",
411
+ "transformer.h.39.self_attention.dense.bias": "pytorch_model-00021-of-00036.bin",
412
+ "transformer.h.39.self_attention.dense.weight": "pytorch_model-00021-of-00036.bin",
413
+ "transformer.h.39.self_attention.query_key_value.bias": "pytorch_model-00021-of-00036.bin",
414
+ "transformer.h.39.self_attention.query_key_value.weight": "pytorch_model-00021-of-00036.bin",
415
+ "transformer.h.4.input_layernorm.bias": "pytorch_model-00003-of-00036.bin",
416
+ "transformer.h.4.input_layernorm.weight": "pytorch_model-00003-of-00036.bin",
417
+ "transformer.h.4.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00036.bin",
418
+ "transformer.h.4.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00036.bin",
419
+ "transformer.h.4.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00036.bin",
420
+ "transformer.h.4.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00036.bin",
421
+ "transformer.h.4.post_attention_layernorm.bias": "pytorch_model-00003-of-00036.bin",
422
+ "transformer.h.4.post_attention_layernorm.weight": "pytorch_model-00003-of-00036.bin",
423
+ "transformer.h.4.self_attention.dense.bias": "pytorch_model-00003-of-00036.bin",
424
+ "transformer.h.4.self_attention.dense.weight": "pytorch_model-00003-of-00036.bin",
425
+ "transformer.h.4.self_attention.query_key_value.bias": "pytorch_model-00003-of-00036.bin",
426
+ "transformer.h.4.self_attention.query_key_value.weight": "pytorch_model-00003-of-00036.bin",
427
+ "transformer.h.40.input_layernorm.bias": "pytorch_model-00021-of-00036.bin",
428
+ "transformer.h.40.input_layernorm.weight": "pytorch_model-00021-of-00036.bin",
429
+ "transformer.h.40.mlp.dense_4h_to_h.bias": "pytorch_model-00022-of-00036.bin",
430
+ "transformer.h.40.mlp.dense_4h_to_h.weight": "pytorch_model-00022-of-00036.bin",
431
+ "transformer.h.40.mlp.dense_h_to_4h.bias": "pytorch_model-00022-of-00036.bin",
432
+ "transformer.h.40.mlp.dense_h_to_4h.weight": "pytorch_model-00022-of-00036.bin",
433
+ "transformer.h.40.post_attention_layernorm.bias": "pytorch_model-00021-of-00036.bin",
434
+ "transformer.h.40.post_attention_layernorm.weight": "pytorch_model-00021-of-00036.bin",
435
+ "transformer.h.40.self_attention.dense.bias": "pytorch_model-00021-of-00036.bin",
436
+ "transformer.h.40.self_attention.dense.weight": "pytorch_model-00021-of-00036.bin",
437
+ "transformer.h.40.self_attention.query_key_value.bias": "pytorch_model-00021-of-00036.bin",
438
+ "transformer.h.40.self_attention.query_key_value.weight": "pytorch_model-00021-of-00036.bin",
439
+ "transformer.h.41.input_layernorm.bias": "pytorch_model-00022-of-00036.bin",
440
+ "transformer.h.41.input_layernorm.weight": "pytorch_model-00022-of-00036.bin",
441
+ "transformer.h.41.mlp.dense_4h_to_h.bias": "pytorch_model-00022-of-00036.bin",
442
+ "transformer.h.41.mlp.dense_4h_to_h.weight": "pytorch_model-00022-of-00036.bin",
443
+ "transformer.h.41.mlp.dense_h_to_4h.bias": "pytorch_model-00022-of-00036.bin",
444
+ "transformer.h.41.mlp.dense_h_to_4h.weight": "pytorch_model-00022-of-00036.bin",
445
+ "transformer.h.41.post_attention_layernorm.bias": "pytorch_model-00022-of-00036.bin",
446
+ "transformer.h.41.post_attention_layernorm.weight": "pytorch_model-00022-of-00036.bin",
447
+ "transformer.h.41.self_attention.dense.bias": "pytorch_model-00022-of-00036.bin",
448
+ "transformer.h.41.self_attention.dense.weight": "pytorch_model-00022-of-00036.bin",
449
+ "transformer.h.41.self_attention.query_key_value.bias": "pytorch_model-00022-of-00036.bin",
450
+ "transformer.h.41.self_attention.query_key_value.weight": "pytorch_model-00022-of-00036.bin",
451
+ "transformer.h.42.input_layernorm.bias": "pytorch_model-00022-of-00036.bin",
452
+ "transformer.h.42.input_layernorm.weight": "pytorch_model-00022-of-00036.bin",
453
+ "transformer.h.42.mlp.dense_4h_to_h.bias": "pytorch_model-00023-of-00036.bin",
454
+ "transformer.h.42.mlp.dense_4h_to_h.weight": "pytorch_model-00023-of-00036.bin",
455
+ "transformer.h.42.mlp.dense_h_to_4h.bias": "pytorch_model-00023-of-00036.bin",
456
+ "transformer.h.42.mlp.dense_h_to_4h.weight": "pytorch_model-00023-of-00036.bin",
457
+ "transformer.h.42.post_attention_layernorm.bias": "pytorch_model-00022-of-00036.bin",
458
+ "transformer.h.42.post_attention_layernorm.weight": "pytorch_model-00022-of-00036.bin",
459
+ "transformer.h.42.self_attention.dense.bias": "pytorch_model-00022-of-00036.bin",
460
+ "transformer.h.42.self_attention.dense.weight": "pytorch_model-00022-of-00036.bin",
461
+ "transformer.h.42.self_attention.query_key_value.bias": "pytorch_model-00022-of-00036.bin",
462
+ "transformer.h.42.self_attention.query_key_value.weight": "pytorch_model-00022-of-00036.bin",
463
+ "transformer.h.43.input_layernorm.bias": "pytorch_model-00023-of-00036.bin",
464
+ "transformer.h.43.input_layernorm.weight": "pytorch_model-00023-of-00036.bin",
465
+ "transformer.h.43.mlp.dense_4h_to_h.bias": "pytorch_model-00023-of-00036.bin",
466
+ "transformer.h.43.mlp.dense_4h_to_h.weight": "pytorch_model-00023-of-00036.bin",
467
+ "transformer.h.43.mlp.dense_h_to_4h.bias": "pytorch_model-00023-of-00036.bin",
468
+ "transformer.h.43.mlp.dense_h_to_4h.weight": "pytorch_model-00023-of-00036.bin",
469
+ "transformer.h.43.post_attention_layernorm.bias": "pytorch_model-00023-of-00036.bin",
470
+ "transformer.h.43.post_attention_layernorm.weight": "pytorch_model-00023-of-00036.bin",
471
+ "transformer.h.43.self_attention.dense.bias": "pytorch_model-00023-of-00036.bin",
472
+ "transformer.h.43.self_attention.dense.weight": "pytorch_model-00023-of-00036.bin",
473
+ "transformer.h.43.self_attention.query_key_value.bias": "pytorch_model-00023-of-00036.bin",
474
+ "transformer.h.43.self_attention.query_key_value.weight": "pytorch_model-00023-of-00036.bin",
475
+ "transformer.h.44.input_layernorm.bias": "pytorch_model-00023-of-00036.bin",
476
+ "transformer.h.44.input_layernorm.weight": "pytorch_model-00023-of-00036.bin",
477
+ "transformer.h.44.mlp.dense_4h_to_h.bias": "pytorch_model-00024-of-00036.bin",
478
+ "transformer.h.44.mlp.dense_4h_to_h.weight": "pytorch_model-00024-of-00036.bin",
479
+ "transformer.h.44.mlp.dense_h_to_4h.bias": "pytorch_model-00024-of-00036.bin",
480
+ "transformer.h.44.mlp.dense_h_to_4h.weight": "pytorch_model-00024-of-00036.bin",
481
+ "transformer.h.44.post_attention_layernorm.bias": "pytorch_model-00023-of-00036.bin",
482
+ "transformer.h.44.post_attention_layernorm.weight": "pytorch_model-00023-of-00036.bin",
483
+ "transformer.h.44.self_attention.dense.bias": "pytorch_model-00023-of-00036.bin",
484
+ "transformer.h.44.self_attention.dense.weight": "pytorch_model-00023-of-00036.bin",
485
+ "transformer.h.44.self_attention.query_key_value.bias": "pytorch_model-00023-of-00036.bin",
486
+ "transformer.h.44.self_attention.query_key_value.weight": "pytorch_model-00023-of-00036.bin",
487
+ "transformer.h.45.input_layernorm.bias": "pytorch_model-00024-of-00036.bin",
488
+ "transformer.h.45.input_layernorm.weight": "pytorch_model-00024-of-00036.bin",
489
+ "transformer.h.45.mlp.dense_4h_to_h.bias": "pytorch_model-00024-of-00036.bin",
490
+ "transformer.h.45.mlp.dense_4h_to_h.weight": "pytorch_model-00024-of-00036.bin",
491
+ "transformer.h.45.mlp.dense_h_to_4h.bias": "pytorch_model-00024-of-00036.bin",
492
+ "transformer.h.45.mlp.dense_h_to_4h.weight": "pytorch_model-00024-of-00036.bin",
493
+ "transformer.h.45.post_attention_layernorm.bias": "pytorch_model-00024-of-00036.bin",
494
+ "transformer.h.45.post_attention_layernorm.weight": "pytorch_model-00024-of-00036.bin",
495
+ "transformer.h.45.self_attention.dense.bias": "pytorch_model-00024-of-00036.bin",
496
+ "transformer.h.45.self_attention.dense.weight": "pytorch_model-00024-of-00036.bin",
497
+ "transformer.h.45.self_attention.query_key_value.bias": "pytorch_model-00024-of-00036.bin",
498
+ "transformer.h.45.self_attention.query_key_value.weight": "pytorch_model-00024-of-00036.bin",
499
+ "transformer.h.46.input_layernorm.bias": "pytorch_model-00024-of-00036.bin",
500
+ "transformer.h.46.input_layernorm.weight": "pytorch_model-00024-of-00036.bin",
501
+ "transformer.h.46.mlp.dense_4h_to_h.bias": "pytorch_model-00025-of-00036.bin",
502
+ "transformer.h.46.mlp.dense_4h_to_h.weight": "pytorch_model-00025-of-00036.bin",
503
+ "transformer.h.46.mlp.dense_h_to_4h.bias": "pytorch_model-00025-of-00036.bin",
504
+ "transformer.h.46.mlp.dense_h_to_4h.weight": "pytorch_model-00025-of-00036.bin",
505
+ "transformer.h.46.post_attention_layernorm.bias": "pytorch_model-00024-of-00036.bin",
506
+ "transformer.h.46.post_attention_layernorm.weight": "pytorch_model-00024-of-00036.bin",
507
+ "transformer.h.46.self_attention.dense.bias": "pytorch_model-00024-of-00036.bin",
508
+ "transformer.h.46.self_attention.dense.weight": "pytorch_model-00024-of-00036.bin",
509
+ "transformer.h.46.self_attention.query_key_value.bias": "pytorch_model-00024-of-00036.bin",
510
+ "transformer.h.46.self_attention.query_key_value.weight": "pytorch_model-00024-of-00036.bin",
511
+ "transformer.h.47.input_layernorm.bias": "pytorch_model-00025-of-00036.bin",
512
+ "transformer.h.47.input_layernorm.weight": "pytorch_model-00025-of-00036.bin",
513
+ "transformer.h.47.mlp.dense_4h_to_h.bias": "pytorch_model-00025-of-00036.bin",
514
+ "transformer.h.47.mlp.dense_4h_to_h.weight": "pytorch_model-00025-of-00036.bin",
515
+ "transformer.h.47.mlp.dense_h_to_4h.bias": "pytorch_model-00025-of-00036.bin",
516
+ "transformer.h.47.mlp.dense_h_to_4h.weight": "pytorch_model-00025-of-00036.bin",
517
+ "transformer.h.47.post_attention_layernorm.bias": "pytorch_model-00025-of-00036.bin",
518
+ "transformer.h.47.post_attention_layernorm.weight": "pytorch_model-00025-of-00036.bin",
519
+ "transformer.h.47.self_attention.dense.bias": "pytorch_model-00025-of-00036.bin",
520
+ "transformer.h.47.self_attention.dense.weight": "pytorch_model-00025-of-00036.bin",
521
+ "transformer.h.47.self_attention.query_key_value.bias": "pytorch_model-00025-of-00036.bin",
522
+ "transformer.h.47.self_attention.query_key_value.weight": "pytorch_model-00025-of-00036.bin",
523
+ "transformer.h.48.input_layernorm.bias": "pytorch_model-00025-of-00036.bin",
524
+ "transformer.h.48.input_layernorm.weight": "pytorch_model-00025-of-00036.bin",
525
+ "transformer.h.48.mlp.dense_4h_to_h.bias": "pytorch_model-00026-of-00036.bin",
526
+ "transformer.h.48.mlp.dense_4h_to_h.weight": "pytorch_model-00026-of-00036.bin",
527
+ "transformer.h.48.mlp.dense_h_to_4h.bias": "pytorch_model-00026-of-00036.bin",
528
+ "transformer.h.48.mlp.dense_h_to_4h.weight": "pytorch_model-00026-of-00036.bin",
529
+ "transformer.h.48.post_attention_layernorm.bias": "pytorch_model-00025-of-00036.bin",
530
+ "transformer.h.48.post_attention_layernorm.weight": "pytorch_model-00025-of-00036.bin",
531
+ "transformer.h.48.self_attention.dense.bias": "pytorch_model-00025-of-00036.bin",
532
+ "transformer.h.48.self_attention.dense.weight": "pytorch_model-00025-of-00036.bin",
533
+ "transformer.h.48.self_attention.query_key_value.bias": "pytorch_model-00025-of-00036.bin",
534
+ "transformer.h.48.self_attention.query_key_value.weight": "pytorch_model-00025-of-00036.bin",
535
+ "transformer.h.49.input_layernorm.bias": "pytorch_model-00026-of-00036.bin",
536
+ "transformer.h.49.input_layernorm.weight": "pytorch_model-00026-of-00036.bin",
537
+ "transformer.h.49.mlp.dense_4h_to_h.bias": "pytorch_model-00026-of-00036.bin",
538
+ "transformer.h.49.mlp.dense_4h_to_h.weight": "pytorch_model-00026-of-00036.bin",
539
+ "transformer.h.49.mlp.dense_h_to_4h.bias": "pytorch_model-00026-of-00036.bin",
540
+ "transformer.h.49.mlp.dense_h_to_4h.weight": "pytorch_model-00026-of-00036.bin",
541
+ "transformer.h.49.post_attention_layernorm.bias": "pytorch_model-00026-of-00036.bin",
542
+ "transformer.h.49.post_attention_layernorm.weight": "pytorch_model-00026-of-00036.bin",
543
+ "transformer.h.49.self_attention.dense.bias": "pytorch_model-00026-of-00036.bin",
544
+ "transformer.h.49.self_attention.dense.weight": "pytorch_model-00026-of-00036.bin",
545
+ "transformer.h.49.self_attention.query_key_value.bias": "pytorch_model-00026-of-00036.bin",
546
+ "transformer.h.49.self_attention.query_key_value.weight": "pytorch_model-00026-of-00036.bin",
547
+ "transformer.h.5.input_layernorm.bias": "pytorch_model-00004-of-00036.bin",
548
+ "transformer.h.5.input_layernorm.weight": "pytorch_model-00004-of-00036.bin",
549
+ "transformer.h.5.mlp.dense_4h_to_h.bias": "pytorch_model-00004-of-00036.bin",
550
+ "transformer.h.5.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00036.bin",
551
+ "transformer.h.5.mlp.dense_h_to_4h.bias": "pytorch_model-00004-of-00036.bin",
552
+ "transformer.h.5.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00036.bin",
553
+ "transformer.h.5.post_attention_layernorm.bias": "pytorch_model-00004-of-00036.bin",
554
+ "transformer.h.5.post_attention_layernorm.weight": "pytorch_model-00004-of-00036.bin",
555
+ "transformer.h.5.self_attention.dense.bias": "pytorch_model-00004-of-00036.bin",
556
+ "transformer.h.5.self_attention.dense.weight": "pytorch_model-00004-of-00036.bin",
557
+ "transformer.h.5.self_attention.query_key_value.bias": "pytorch_model-00004-of-00036.bin",
558
+ "transformer.h.5.self_attention.query_key_value.weight": "pytorch_model-00004-of-00036.bin",
559
+ "transformer.h.50.input_layernorm.bias": "pytorch_model-00026-of-00036.bin",
560
+ "transformer.h.50.input_layernorm.weight": "pytorch_model-00026-of-00036.bin",
561
+ "transformer.h.50.mlp.dense_4h_to_h.bias": "pytorch_model-00027-of-00036.bin",
562
+ "transformer.h.50.mlp.dense_4h_to_h.weight": "pytorch_model-00027-of-00036.bin",
563
+ "transformer.h.50.mlp.dense_h_to_4h.bias": "pytorch_model-00027-of-00036.bin",
564
+ "transformer.h.50.mlp.dense_h_to_4h.weight": "pytorch_model-00027-of-00036.bin",
565
+ "transformer.h.50.post_attention_layernorm.bias": "pytorch_model-00026-of-00036.bin",
566
+ "transformer.h.50.post_attention_layernorm.weight": "pytorch_model-00026-of-00036.bin",
567
+ "transformer.h.50.self_attention.dense.bias": "pytorch_model-00026-of-00036.bin",
568
+ "transformer.h.50.self_attention.dense.weight": "pytorch_model-00026-of-00036.bin",
569
+ "transformer.h.50.self_attention.query_key_value.bias": "pytorch_model-00026-of-00036.bin",
570
+ "transformer.h.50.self_attention.query_key_value.weight": "pytorch_model-00026-of-00036.bin",
571
+ "transformer.h.51.input_layernorm.bias": "pytorch_model-00027-of-00036.bin",
572
+ "transformer.h.51.input_layernorm.weight": "pytorch_model-00027-of-00036.bin",
573
+ "transformer.h.51.mlp.dense_4h_to_h.bias": "pytorch_model-00027-of-00036.bin",
574
+ "transformer.h.51.mlp.dense_4h_to_h.weight": "pytorch_model-00027-of-00036.bin",
575
+ "transformer.h.51.mlp.dense_h_to_4h.bias": "pytorch_model-00027-of-00036.bin",
576
+ "transformer.h.51.mlp.dense_h_to_4h.weight": "pytorch_model-00027-of-00036.bin",
577
+ "transformer.h.51.post_attention_layernorm.bias": "pytorch_model-00027-of-00036.bin",
578
+ "transformer.h.51.post_attention_layernorm.weight": "pytorch_model-00027-of-00036.bin",
579
+ "transformer.h.51.self_attention.dense.bias": "pytorch_model-00027-of-00036.bin",
580
+ "transformer.h.51.self_attention.dense.weight": "pytorch_model-00027-of-00036.bin",
581
+ "transformer.h.51.self_attention.query_key_value.bias": "pytorch_model-00027-of-00036.bin",
582
+ "transformer.h.51.self_attention.query_key_value.weight": "pytorch_model-00027-of-00036.bin",
583
+ "transformer.h.52.input_layernorm.bias": "pytorch_model-00027-of-00036.bin",
584
+ "transformer.h.52.input_layernorm.weight": "pytorch_model-00027-of-00036.bin",
585
+ "transformer.h.52.mlp.dense_4h_to_h.bias": "pytorch_model-00028-of-00036.bin",
586
+ "transformer.h.52.mlp.dense_4h_to_h.weight": "pytorch_model-00028-of-00036.bin",
587
+ "transformer.h.52.mlp.dense_h_to_4h.bias": "pytorch_model-00028-of-00036.bin",
588
+ "transformer.h.52.mlp.dense_h_to_4h.weight": "pytorch_model-00028-of-00036.bin",
589
+ "transformer.h.52.post_attention_layernorm.bias": "pytorch_model-00027-of-00036.bin",
590
+ "transformer.h.52.post_attention_layernorm.weight": "pytorch_model-00027-of-00036.bin",
591
+ "transformer.h.52.self_attention.dense.bias": "pytorch_model-00027-of-00036.bin",
592
+ "transformer.h.52.self_attention.dense.weight": "pytorch_model-00027-of-00036.bin",
593
+ "transformer.h.52.self_attention.query_key_value.bias": "pytorch_model-00027-of-00036.bin",
594
+ "transformer.h.52.self_attention.query_key_value.weight": "pytorch_model-00027-of-00036.bin",
595
+ "transformer.h.53.input_layernorm.bias": "pytorch_model-00028-of-00036.bin",
596
+ "transformer.h.53.input_layernorm.weight": "pytorch_model-00028-of-00036.bin",
597
+ "transformer.h.53.mlp.dense_4h_to_h.bias": "pytorch_model-00028-of-00036.bin",
598
+ "transformer.h.53.mlp.dense_4h_to_h.weight": "pytorch_model-00028-of-00036.bin",
599
+ "transformer.h.53.mlp.dense_h_to_4h.bias": "pytorch_model-00028-of-00036.bin",
600
+ "transformer.h.53.mlp.dense_h_to_4h.weight": "pytorch_model-00028-of-00036.bin",
601
+ "transformer.h.53.post_attention_layernorm.bias": "pytorch_model-00028-of-00036.bin",
602
+ "transformer.h.53.post_attention_layernorm.weight": "pytorch_model-00028-of-00036.bin",
603
+ "transformer.h.53.self_attention.dense.bias": "pytorch_model-00028-of-00036.bin",
604
+ "transformer.h.53.self_attention.dense.weight": "pytorch_model-00028-of-00036.bin",
605
+ "transformer.h.53.self_attention.query_key_value.bias": "pytorch_model-00028-of-00036.bin",
606
+ "transformer.h.53.self_attention.query_key_value.weight": "pytorch_model-00028-of-00036.bin",
607
+ "transformer.h.54.input_layernorm.bias": "pytorch_model-00028-of-00036.bin",
608
+ "transformer.h.54.input_layernorm.weight": "pytorch_model-00028-of-00036.bin",
609
+ "transformer.h.54.mlp.dense_4h_to_h.bias": "pytorch_model-00029-of-00036.bin",
610
+ "transformer.h.54.mlp.dense_4h_to_h.weight": "pytorch_model-00029-of-00036.bin",
611
+ "transformer.h.54.mlp.dense_h_to_4h.bias": "pytorch_model-00029-of-00036.bin",
612
+ "transformer.h.54.mlp.dense_h_to_4h.weight": "pytorch_model-00029-of-00036.bin",
613
+ "transformer.h.54.post_attention_layernorm.bias": "pytorch_model-00028-of-00036.bin",
614
+ "transformer.h.54.post_attention_layernorm.weight": "pytorch_model-00028-of-00036.bin",
615
+ "transformer.h.54.self_attention.dense.bias": "pytorch_model-00028-of-00036.bin",
616
+ "transformer.h.54.self_attention.dense.weight": "pytorch_model-00028-of-00036.bin",
617
+ "transformer.h.54.self_attention.query_key_value.bias": "pytorch_model-00028-of-00036.bin",
618
+ "transformer.h.54.self_attention.query_key_value.weight": "pytorch_model-00028-of-00036.bin",
619
+ "transformer.h.55.input_layernorm.bias": "pytorch_model-00029-of-00036.bin",
620
+ "transformer.h.55.input_layernorm.weight": "pytorch_model-00029-of-00036.bin",
621
+ "transformer.h.55.mlp.dense_4h_to_h.bias": "pytorch_model-00029-of-00036.bin",
622
+ "transformer.h.55.mlp.dense_4h_to_h.weight": "pytorch_model-00029-of-00036.bin",
623
+ "transformer.h.55.mlp.dense_h_to_4h.bias": "pytorch_model-00029-of-00036.bin",
624
+ "transformer.h.55.mlp.dense_h_to_4h.weight": "pytorch_model-00029-of-00036.bin",
625
+ "transformer.h.55.post_attention_layernorm.bias": "pytorch_model-00029-of-00036.bin",
626
+ "transformer.h.55.post_attention_layernorm.weight": "pytorch_model-00029-of-00036.bin",
627
+ "transformer.h.55.self_attention.dense.bias": "pytorch_model-00029-of-00036.bin",
628
+ "transformer.h.55.self_attention.dense.weight": "pytorch_model-00029-of-00036.bin",
629
+ "transformer.h.55.self_attention.query_key_value.bias": "pytorch_model-00029-of-00036.bin",
630
+ "transformer.h.55.self_attention.query_key_value.weight": "pytorch_model-00029-of-00036.bin",
631
+ "transformer.h.56.input_layernorm.bias": "pytorch_model-00029-of-00036.bin",
632
+ "transformer.h.56.input_layernorm.weight": "pytorch_model-00029-of-00036.bin",
633
+ "transformer.h.56.mlp.dense_4h_to_h.bias": "pytorch_model-00030-of-00036.bin",
634
+ "transformer.h.56.mlp.dense_4h_to_h.weight": "pytorch_model-00030-of-00036.bin",
635
+ "transformer.h.56.mlp.dense_h_to_4h.bias": "pytorch_model-00030-of-00036.bin",
636
+ "transformer.h.56.mlp.dense_h_to_4h.weight": "pytorch_model-00030-of-00036.bin",
637
+ "transformer.h.56.post_attention_layernorm.bias": "pytorch_model-00029-of-00036.bin",
638
+ "transformer.h.56.post_attention_layernorm.weight": "pytorch_model-00029-of-00036.bin",
639
+ "transformer.h.56.self_attention.dense.bias": "pytorch_model-00029-of-00036.bin",
640
+ "transformer.h.56.self_attention.dense.weight": "pytorch_model-00029-of-00036.bin",
641
+ "transformer.h.56.self_attention.query_key_value.bias": "pytorch_model-00029-of-00036.bin",
642
+ "transformer.h.56.self_attention.query_key_value.weight": "pytorch_model-00029-of-00036.bin",
643
+ "transformer.h.57.input_layernorm.bias": "pytorch_model-00030-of-00036.bin",
644
+ "transformer.h.57.input_layernorm.weight": "pytorch_model-00030-of-00036.bin",
645
+ "transformer.h.57.mlp.dense_4h_to_h.bias": "pytorch_model-00030-of-00036.bin",
646
+ "transformer.h.57.mlp.dense_4h_to_h.weight": "pytorch_model-00030-of-00036.bin",
647
+ "transformer.h.57.mlp.dense_h_to_4h.bias": "pytorch_model-00030-of-00036.bin",
648
+ "transformer.h.57.mlp.dense_h_to_4h.weight": "pytorch_model-00030-of-00036.bin",
649
+ "transformer.h.57.post_attention_layernorm.bias": "pytorch_model-00030-of-00036.bin",
650
+ "transformer.h.57.post_attention_layernorm.weight": "pytorch_model-00030-of-00036.bin",
651
+ "transformer.h.57.self_attention.dense.bias": "pytorch_model-00030-of-00036.bin",
652
+ "transformer.h.57.self_attention.dense.weight": "pytorch_model-00030-of-00036.bin",
653
+ "transformer.h.57.self_attention.query_key_value.bias": "pytorch_model-00030-of-00036.bin",
654
+ "transformer.h.57.self_attention.query_key_value.weight": "pytorch_model-00030-of-00036.bin",
655
+ "transformer.h.58.input_layernorm.bias": "pytorch_model-00030-of-00036.bin",
656
+ "transformer.h.58.input_layernorm.weight": "pytorch_model-00030-of-00036.bin",
657
+ "transformer.h.58.mlp.dense_4h_to_h.bias": "pytorch_model-00031-of-00036.bin",
658
+ "transformer.h.58.mlp.dense_4h_to_h.weight": "pytorch_model-00031-of-00036.bin",
659
+ "transformer.h.58.mlp.dense_h_to_4h.bias": "pytorch_model-00031-of-00036.bin",
660
+ "transformer.h.58.mlp.dense_h_to_4h.weight": "pytorch_model-00031-of-00036.bin",
661
+ "transformer.h.58.post_attention_layernorm.bias": "pytorch_model-00030-of-00036.bin",
662
+ "transformer.h.58.post_attention_layernorm.weight": "pytorch_model-00030-of-00036.bin",
663
+ "transformer.h.58.self_attention.dense.bias": "pytorch_model-00030-of-00036.bin",
664
+ "transformer.h.58.self_attention.dense.weight": "pytorch_model-00030-of-00036.bin",
665
+ "transformer.h.58.self_attention.query_key_value.bias": "pytorch_model-00030-of-00036.bin",
666
+ "transformer.h.58.self_attention.query_key_value.weight": "pytorch_model-00030-of-00036.bin",
667
+ "transformer.h.59.input_layernorm.bias": "pytorch_model-00031-of-00036.bin",
668
+ "transformer.h.59.input_layernorm.weight": "pytorch_model-00031-of-00036.bin",
669
+ "transformer.h.59.mlp.dense_4h_to_h.bias": "pytorch_model-00031-of-00036.bin",
670
+ "transformer.h.59.mlp.dense_4h_to_h.weight": "pytorch_model-00031-of-00036.bin",
671
+ "transformer.h.59.mlp.dense_h_to_4h.bias": "pytorch_model-00031-of-00036.bin",
672
+ "transformer.h.59.mlp.dense_h_to_4h.weight": "pytorch_model-00031-of-00036.bin",
673
+ "transformer.h.59.post_attention_layernorm.bias": "pytorch_model-00031-of-00036.bin",
674
+ "transformer.h.59.post_attention_layernorm.weight": "pytorch_model-00031-of-00036.bin",
675
+ "transformer.h.59.self_attention.dense.bias": "pytorch_model-00031-of-00036.bin",
676
+ "transformer.h.59.self_attention.dense.weight": "pytorch_model-00031-of-00036.bin",
677
+ "transformer.h.59.self_attention.query_key_value.bias": "pytorch_model-00031-of-00036.bin",
678
+ "transformer.h.59.self_attention.query_key_value.weight": "pytorch_model-00031-of-00036.bin",
679
+ "transformer.h.6.input_layernorm.bias": "pytorch_model-00004-of-00036.bin",
680
+ "transformer.h.6.input_layernorm.weight": "pytorch_model-00004-of-00036.bin",
681
+ "transformer.h.6.mlp.dense_4h_to_h.bias": "pytorch_model-00005-of-00036.bin",
682
+ "transformer.h.6.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00036.bin",
683
+ "transformer.h.6.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00036.bin",
684
+ "transformer.h.6.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00036.bin",
685
+ "transformer.h.6.post_attention_layernorm.bias": "pytorch_model-00004-of-00036.bin",
686
+ "transformer.h.6.post_attention_layernorm.weight": "pytorch_model-00004-of-00036.bin",
687
+ "transformer.h.6.self_attention.dense.bias": "pytorch_model-00004-of-00036.bin",
688
+ "transformer.h.6.self_attention.dense.weight": "pytorch_model-00004-of-00036.bin",
689
+ "transformer.h.6.self_attention.query_key_value.bias": "pytorch_model-00004-of-00036.bin",
690
+ "transformer.h.6.self_attention.query_key_value.weight": "pytorch_model-00004-of-00036.bin",
691
+ "transformer.h.60.input_layernorm.bias": "pytorch_model-00031-of-00036.bin",
692
+ "transformer.h.60.input_layernorm.weight": "pytorch_model-00031-of-00036.bin",
693
+ "transformer.h.60.mlp.dense_4h_to_h.bias": "pytorch_model-00032-of-00036.bin",
694
+ "transformer.h.60.mlp.dense_4h_to_h.weight": "pytorch_model-00032-of-00036.bin",
695
+ "transformer.h.60.mlp.dense_h_to_4h.bias": "pytorch_model-00032-of-00036.bin",
696
+ "transformer.h.60.mlp.dense_h_to_4h.weight": "pytorch_model-00032-of-00036.bin",
697
+ "transformer.h.60.post_attention_layernorm.bias": "pytorch_model-00031-of-00036.bin",
698
+ "transformer.h.60.post_attention_layernorm.weight": "pytorch_model-00031-of-00036.bin",
699
+ "transformer.h.60.self_attention.dense.bias": "pytorch_model-00031-of-00036.bin",
700
+ "transformer.h.60.self_attention.dense.weight": "pytorch_model-00031-of-00036.bin",
701
+ "transformer.h.60.self_attention.query_key_value.bias": "pytorch_model-00031-of-00036.bin",
702
+ "transformer.h.60.self_attention.query_key_value.weight": "pytorch_model-00031-of-00036.bin",
703
+ "transformer.h.61.input_layernorm.bias": "pytorch_model-00032-of-00036.bin",
704
+ "transformer.h.61.input_layernorm.weight": "pytorch_model-00032-of-00036.bin",
705
+ "transformer.h.61.mlp.dense_4h_to_h.bias": "pytorch_model-00032-of-00036.bin",
706
+ "transformer.h.61.mlp.dense_4h_to_h.weight": "pytorch_model-00032-of-00036.bin",
707
+ "transformer.h.61.mlp.dense_h_to_4h.bias": "pytorch_model-00032-of-00036.bin",
708
+ "transformer.h.61.mlp.dense_h_to_4h.weight": "pytorch_model-00032-of-00036.bin",
709
+ "transformer.h.61.post_attention_layernorm.bias": "pytorch_model-00032-of-00036.bin",
710
+ "transformer.h.61.post_attention_layernorm.weight": "pytorch_model-00032-of-00036.bin",
711
+ "transformer.h.61.self_attention.dense.bias": "pytorch_model-00032-of-00036.bin",
712
+ "transformer.h.61.self_attention.dense.weight": "pytorch_model-00032-of-00036.bin",
713
+ "transformer.h.61.self_attention.query_key_value.bias": "pytorch_model-00032-of-00036.bin",
714
+ "transformer.h.61.self_attention.query_key_value.weight": "pytorch_model-00032-of-00036.bin",
715
+ "transformer.h.62.input_layernorm.bias": "pytorch_model-00032-of-00036.bin",
716
+ "transformer.h.62.input_layernorm.weight": "pytorch_model-00032-of-00036.bin",
717
+ "transformer.h.62.mlp.dense_4h_to_h.bias": "pytorch_model-00033-of-00036.bin",
718
+ "transformer.h.62.mlp.dense_4h_to_h.weight": "pytorch_model-00033-of-00036.bin",
719
+ "transformer.h.62.mlp.dense_h_to_4h.bias": "pytorch_model-00033-of-00036.bin",
720
+ "transformer.h.62.mlp.dense_h_to_4h.weight": "pytorch_model-00033-of-00036.bin",
721
+ "transformer.h.62.post_attention_layernorm.bias": "pytorch_model-00032-of-00036.bin",
722
+ "transformer.h.62.post_attention_layernorm.weight": "pytorch_model-00032-of-00036.bin",
723
+ "transformer.h.62.self_attention.dense.bias": "pytorch_model-00032-of-00036.bin",
724
+ "transformer.h.62.self_attention.dense.weight": "pytorch_model-00032-of-00036.bin",
725
+ "transformer.h.62.self_attention.query_key_value.bias": "pytorch_model-00032-of-00036.bin",
726
+ "transformer.h.62.self_attention.query_key_value.weight": "pytorch_model-00032-of-00036.bin",
727
+ "transformer.h.63.input_layernorm.bias": "pytorch_model-00033-of-00036.bin",
728
+ "transformer.h.63.input_layernorm.weight": "pytorch_model-00033-of-00036.bin",
729
+ "transformer.h.63.mlp.dense_4h_to_h.bias": "pytorch_model-00033-of-00036.bin",
730
+ "transformer.h.63.mlp.dense_4h_to_h.weight": "pytorch_model-00033-of-00036.bin",
731
+ "transformer.h.63.mlp.dense_h_to_4h.bias": "pytorch_model-00033-of-00036.bin",
732
+ "transformer.h.63.mlp.dense_h_to_4h.weight": "pytorch_model-00033-of-00036.bin",
733
+ "transformer.h.63.post_attention_layernorm.bias": "pytorch_model-00033-of-00036.bin",
734
+ "transformer.h.63.post_attention_layernorm.weight": "pytorch_model-00033-of-00036.bin",
735
+ "transformer.h.63.self_attention.dense.bias": "pytorch_model-00033-of-00036.bin",
736
+ "transformer.h.63.self_attention.dense.weight": "pytorch_model-00033-of-00036.bin",
737
+ "transformer.h.63.self_attention.query_key_value.bias": "pytorch_model-00033-of-00036.bin",
738
+ "transformer.h.63.self_attention.query_key_value.weight": "pytorch_model-00033-of-00036.bin",
739
+ "transformer.h.64.input_layernorm.bias": "pytorch_model-00033-of-00036.bin",
740
+ "transformer.h.64.input_layernorm.weight": "pytorch_model-00033-of-00036.bin",
741
+ "transformer.h.64.mlp.dense_4h_to_h.bias": "pytorch_model-00034-of-00036.bin",
742
+ "transformer.h.64.mlp.dense_4h_to_h.weight": "pytorch_model-00034-of-00036.bin",
743
+ "transformer.h.64.mlp.dense_h_to_4h.bias": "pytorch_model-00034-of-00036.bin",
744
+ "transformer.h.64.mlp.dense_h_to_4h.weight": "pytorch_model-00034-of-00036.bin",
745
+ "transformer.h.64.post_attention_layernorm.bias": "pytorch_model-00033-of-00036.bin",
746
+ "transformer.h.64.post_attention_layernorm.weight": "pytorch_model-00033-of-00036.bin",
747
+ "transformer.h.64.self_attention.dense.bias": "pytorch_model-00033-of-00036.bin",
748
+ "transformer.h.64.self_attention.dense.weight": "pytorch_model-00033-of-00036.bin",
749
+ "transformer.h.64.self_attention.query_key_value.bias": "pytorch_model-00033-of-00036.bin",
750
+ "transformer.h.64.self_attention.query_key_value.weight": "pytorch_model-00033-of-00036.bin",
751
+ "transformer.h.65.input_layernorm.bias": "pytorch_model-00034-of-00036.bin",
752
+ "transformer.h.65.input_layernorm.weight": "pytorch_model-00034-of-00036.bin",
753
+ "transformer.h.65.mlp.dense_4h_to_h.bias": "pytorch_model-00034-of-00036.bin",
754
+ "transformer.h.65.mlp.dense_4h_to_h.weight": "pytorch_model-00034-of-00036.bin",
755
+ "transformer.h.65.mlp.dense_h_to_4h.bias": "pytorch_model-00034-of-00036.bin",
756
+ "transformer.h.65.mlp.dense_h_to_4h.weight": "pytorch_model-00034-of-00036.bin",
757
+ "transformer.h.65.post_attention_layernorm.bias": "pytorch_model-00034-of-00036.bin",
758
+ "transformer.h.65.post_attention_layernorm.weight": "pytorch_model-00034-of-00036.bin",
759
+ "transformer.h.65.self_attention.dense.bias": "pytorch_model-00034-of-00036.bin",
760
+ "transformer.h.65.self_attention.dense.weight": "pytorch_model-00034-of-00036.bin",
761
+ "transformer.h.65.self_attention.query_key_value.bias": "pytorch_model-00034-of-00036.bin",
762
+ "transformer.h.65.self_attention.query_key_value.weight": "pytorch_model-00034-of-00036.bin",
763
+ "transformer.h.66.input_layernorm.bias": "pytorch_model-00034-of-00036.bin",
764
+ "transformer.h.66.input_layernorm.weight": "pytorch_model-00034-of-00036.bin",
765
+ "transformer.h.66.mlp.dense_4h_to_h.bias": "pytorch_model-00035-of-00036.bin",
766
+ "transformer.h.66.mlp.dense_4h_to_h.weight": "pytorch_model-00035-of-00036.bin",
767
+ "transformer.h.66.mlp.dense_h_to_4h.bias": "pytorch_model-00035-of-00036.bin",
768
+ "transformer.h.66.mlp.dense_h_to_4h.weight": "pytorch_model-00035-of-00036.bin",
769
+ "transformer.h.66.post_attention_layernorm.bias": "pytorch_model-00034-of-00036.bin",
770
+ "transformer.h.66.post_attention_layernorm.weight": "pytorch_model-00034-of-00036.bin",
771
+ "transformer.h.66.self_attention.dense.bias": "pytorch_model-00034-of-00036.bin",
772
+ "transformer.h.66.self_attention.dense.weight": "pytorch_model-00034-of-00036.bin",
773
+ "transformer.h.66.self_attention.query_key_value.bias": "pytorch_model-00034-of-00036.bin",
774
+ "transformer.h.66.self_attention.query_key_value.weight": "pytorch_model-00034-of-00036.bin",
775
+ "transformer.h.67.input_layernorm.bias": "pytorch_model-00035-of-00036.bin",
776
+ "transformer.h.67.input_layernorm.weight": "pytorch_model-00035-of-00036.bin",
777
+ "transformer.h.67.mlp.dense_4h_to_h.bias": "pytorch_model-00035-of-00036.bin",
778
+ "transformer.h.67.mlp.dense_4h_to_h.weight": "pytorch_model-00035-of-00036.bin",
779
+ "transformer.h.67.mlp.dense_h_to_4h.bias": "pytorch_model-00035-of-00036.bin",
780
+ "transformer.h.67.mlp.dense_h_to_4h.weight": "pytorch_model-00035-of-00036.bin",
781
+ "transformer.h.67.post_attention_layernorm.bias": "pytorch_model-00035-of-00036.bin",
782
+ "transformer.h.67.post_attention_layernorm.weight": "pytorch_model-00035-of-00036.bin",
783
+ "transformer.h.67.self_attention.dense.bias": "pytorch_model-00035-of-00036.bin",
784
+ "transformer.h.67.self_attention.dense.weight": "pytorch_model-00035-of-00036.bin",
785
+ "transformer.h.67.self_attention.query_key_value.bias": "pytorch_model-00035-of-00036.bin",
786
+ "transformer.h.67.self_attention.query_key_value.weight": "pytorch_model-00035-of-00036.bin",
787
+ "transformer.h.68.input_layernorm.bias": "pytorch_model-00035-of-00036.bin",
788
+ "transformer.h.68.input_layernorm.weight": "pytorch_model-00035-of-00036.bin",
789
+ "transformer.h.68.mlp.dense_4h_to_h.bias": "pytorch_model-00036-of-00036.bin",
790
+ "transformer.h.68.mlp.dense_4h_to_h.weight": "pytorch_model-00036-of-00036.bin",
791
+ "transformer.h.68.mlp.dense_h_to_4h.bias": "pytorch_model-00036-of-00036.bin",
792
+ "transformer.h.68.mlp.dense_h_to_4h.weight": "pytorch_model-00036-of-00036.bin",
793
+ "transformer.h.68.post_attention_layernorm.bias": "pytorch_model-00035-of-00036.bin",
794
+ "transformer.h.68.post_attention_layernorm.weight": "pytorch_model-00035-of-00036.bin",
795
+ "transformer.h.68.self_attention.dense.bias": "pytorch_model-00035-of-00036.bin",
796
+ "transformer.h.68.self_attention.dense.weight": "pytorch_model-00035-of-00036.bin",
797
+ "transformer.h.68.self_attention.query_key_value.bias": "pytorch_model-00035-of-00036.bin",
798
+ "transformer.h.68.self_attention.query_key_value.weight": "pytorch_model-00035-of-00036.bin",
799
+ "transformer.h.69.input_layernorm.bias": "pytorch_model-00036-of-00036.bin",
800
+ "transformer.h.69.input_layernorm.weight": "pytorch_model-00036-of-00036.bin",
801
+ "transformer.h.69.mlp.dense_4h_to_h.bias": "pytorch_model-00036-of-00036.bin",
802
+ "transformer.h.69.mlp.dense_4h_to_h.weight": "pytorch_model-00036-of-00036.bin",
803
+ "transformer.h.69.mlp.dense_h_to_4h.bias": "pytorch_model-00036-of-00036.bin",
804
+ "transformer.h.69.mlp.dense_h_to_4h.weight": "pytorch_model-00036-of-00036.bin",
805
+ "transformer.h.69.post_attention_layernorm.bias": "pytorch_model-00036-of-00036.bin",
806
+ "transformer.h.69.post_attention_layernorm.weight": "pytorch_model-00036-of-00036.bin",
807
+ "transformer.h.69.self_attention.dense.bias": "pytorch_model-00036-of-00036.bin",
808
+ "transformer.h.69.self_attention.dense.weight": "pytorch_model-00036-of-00036.bin",
809
+ "transformer.h.69.self_attention.query_key_value.bias": "pytorch_model-00036-of-00036.bin",
810
+ "transformer.h.69.self_attention.query_key_value.weight": "pytorch_model-00036-of-00036.bin",
811
+ "transformer.h.7.input_layernorm.bias": "pytorch_model-00005-of-00036.bin",
812
+ "transformer.h.7.input_layernorm.weight": "pytorch_model-00005-of-00036.bin",
813
+ "transformer.h.7.mlp.dense_4h_to_h.bias": "pytorch_model-00005-of-00036.bin",
814
+ "transformer.h.7.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00036.bin",
815
+ "transformer.h.7.mlp.dense_h_to_4h.bias": "pytorch_model-00005-of-00036.bin",
816
+ "transformer.h.7.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00036.bin",
817
+ "transformer.h.7.post_attention_layernorm.bias": "pytorch_model-00005-of-00036.bin",
818
+ "transformer.h.7.post_attention_layernorm.weight": "pytorch_model-00005-of-00036.bin",
819
+ "transformer.h.7.self_attention.dense.bias": "pytorch_model-00005-of-00036.bin",
820
+ "transformer.h.7.self_attention.dense.weight": "pytorch_model-00005-of-00036.bin",
821
+ "transformer.h.7.self_attention.query_key_value.bias": "pytorch_model-00005-of-00036.bin",
822
+ "transformer.h.7.self_attention.query_key_value.weight": "pytorch_model-00005-of-00036.bin",
823
+ "transformer.h.8.input_layernorm.bias": "pytorch_model-00005-of-00036.bin",
824
+ "transformer.h.8.input_layernorm.weight": "pytorch_model-00005-of-00036.bin",
825
+ "transformer.h.8.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00036.bin",
826
+ "transformer.h.8.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00036.bin",
827
+ "transformer.h.8.mlp.dense_h_to_4h.bias": "pytorch_model-00006-of-00036.bin",
828
+ "transformer.h.8.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00036.bin",
829
+ "transformer.h.8.post_attention_layernorm.bias": "pytorch_model-00005-of-00036.bin",
830
+ "transformer.h.8.post_attention_layernorm.weight": "pytorch_model-00005-of-00036.bin",
831
+ "transformer.h.8.self_attention.dense.bias": "pytorch_model-00005-of-00036.bin",
832
+ "transformer.h.8.self_attention.dense.weight": "pytorch_model-00005-of-00036.bin",
833
+ "transformer.h.8.self_attention.query_key_value.bias": "pytorch_model-00005-of-00036.bin",
834
+ "transformer.h.8.self_attention.query_key_value.weight": "pytorch_model-00005-of-00036.bin",
835
+ "transformer.h.9.input_layernorm.bias": "pytorch_model-00006-of-00036.bin",
836
+ "transformer.h.9.input_layernorm.weight": "pytorch_model-00006-of-00036.bin",
837
+ "transformer.h.9.mlp.dense_4h_to_h.bias": "pytorch_model-00006-of-00036.bin",
838
+ "transformer.h.9.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00036.bin",
839
+ "transformer.h.9.mlp.dense_h_to_4h.bias": "pytorch_model-00006-of-00036.bin",
840
+ "transformer.h.9.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00036.bin",
841
+ "transformer.h.9.post_attention_layernorm.bias": "pytorch_model-00006-of-00036.bin",
842
+ "transformer.h.9.post_attention_layernorm.weight": "pytorch_model-00006-of-00036.bin",
843
+ "transformer.h.9.self_attention.dense.bias": "pytorch_model-00006-of-00036.bin",
844
+ "transformer.h.9.self_attention.dense.weight": "pytorch_model-00006-of-00036.bin",
845
+ "transformer.h.9.self_attention.query_key_value.bias": "pytorch_model-00006-of-00036.bin",
846
+ "transformer.h.9.self_attention.query_key_value.weight": "pytorch_model-00006-of-00036.bin",
847
+ "transformer.ln_f.bias": "pytorch_model-00036-of-00036.bin",
848
+ "transformer.ln_f.weight": "pytorch_model-00036-of-00036.bin",
849
+ "transformer.word_embeddings.weight": "pytorch_model-00001-of-00036.bin",
850
+ "transformer.word_embeddings_layernorm.bias": "pytorch_model-00001-of-00036.bin",
851
+ "transformer.word_embeddings_layernorm.weight": "pytorch_model-00001-of-00036.bin"
852
+ }
853
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0d908b4f9326e0998815690e325b6abbd378978553e10627924dd825db7e243
3
+ size 17477553
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
+ size 4241003
tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<bos>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "<eos>",
41
+ "legacy": null,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<pad>",
44
+ "sp_model_kwargs": {},
45
+ "spaces_between_special_tokens": false,
46
+ "tokenizer_class": "GemmaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }