File size: 5,360 Bytes
303c1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adf4fad
303c1a6
 
adf4fad
303c1a6
 
adf4fad
303c1a6
 
adf4fad
303c1a6
 
adf4fad
303c1a6
 
18e9cc8
adf4fad
303c1a6
 
 
 
 
 
 
 
198834d
303c1a6
 
198834d
303c1a6
198834d
adf4fad
198834d
adf4fad
 
198834d
adf4fad
198834d
 
303c1a6
198834d
 
 
18e9cc8
adf4fad
 
303c1a6
adf4fad
303c1a6
adf4fad
303c1a6
 
adf4fad
303c1a6
adf4fad
 
 
 
 
 
 
 
 
 
303c1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198834d
18e9cc8
198834d
18e9cc8
198834d
18e9cc8
 
 
 
 
 
 
 
198834d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 1" 
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 2" 
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic,  <hl> Cadillac Records <hl> ."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/t5-base-subjqa-books
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_subjqa
      type: books
      args: books
    metrics:
    - name: BLEU4
      type: bleu4
      value: 0.0
    - name: ROUGE-L
      type: rouge-l
      value: 22.95
    - name: METEOR
      type: meteor
      value: 21.2
    - name: BERTScore
      type: bertscore
      value: 93.32
    - name: MoverScore
      type: moverscore
      value: 63.14
---

# Model Card of `lmqg/t5-base-subjqa-books`
This model is fine-tuned version of [lmqg/t5-base-squad](https://huggingface.co/lmqg/t5-base-squad) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: books) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
This model is continuously fine-tuned with [lmqg/t5-base-squad](https://huggingface.co/lmqg/t5-base-squad).

### Overview
- **Language model:** [lmqg/t5-base-squad](https://huggingface.co/lmqg/t5-base-squad)   
- **Language:** en  
- **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (books)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-base-subjqa-books")

# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-base-subjqa-books")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-base-subjqa-books/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.books.json) 

|            |   Score | Type   | Dataset                                                          |
|:-----------|--------:|:-------|:-----------------------------------------------------------------|
| BERTScore  |   93.32 | books  | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_1     |   21.52 | books  | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_2     |   12.47 | books  | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_3     |    2.82 | books  | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_4     |    0    | books  | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| METEOR     |   21.2  | books  | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| MoverScore |   63.14 | books  | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| ROUGE_L    |   22.95 | books  | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_subjqa
 - dataset_name: books
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: ['qg']
 - model: lmqg/t5-base-squad
 - max_length: 512
 - max_length_output: 32
 - epoch: 3
 - batch: 16
 - lr: 0.0001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 4
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-base-subjqa-books/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```