metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: ko
datasets:
- lmqg/qg_koquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로
출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.
example_title: Question Generation Example 1
- text: >-
백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진
타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다.
example_title: Question Generation Example 2
- text: <hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다.
example_title: Question Generation Example 3
model-index:
- name: lmqg/mbart-large-cc25-koquad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_koquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 10.92
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 27.76
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 30.23
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 83.89
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 82.95
- name: BLEU4 (Question & Answer Generation (with Gold Answer))
type: bleu4_question_answer_generation_with_gold_answer
value: 11.25
- name: ROUGE-L (Question & Answer Generation (with Gold Answer))
type: rouge_l_question_answer_generation_with_gold_answer
value: 47.9
- name: METEOR (Question & Answer Generation (with Gold Answer))
type: meteor_question_answer_generation_with_gold_answer
value: 39.03
- name: BERTScore (Question & Answer Generation (with Gold Answer))
type: bertscore_question_answer_generation_with_gold_answer
value: 87.88
- name: MoverScore (Question & Answer Generation (with Gold Answer))
type: moverscore_question_answer_generation_with_gold_answer
value: 84.85
- name: >-
QAAlignedF1Score-BERTScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 88.18
- name: >-
QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold
Answer)) [Gold Answer]
type: >-
qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 88.15
- name: >-
QAAlignedPrecision-BERTScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 88.22
- name: >-
QAAlignedF1Score-MoverScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 85.53
- name: >-
QAAlignedRecall-MoverScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 85.46
- name: >-
QAAlignedPrecision-MoverScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 85.62
- name: BLEU4 (Question & Answer Generation)
type: bleu4_question_answer_generation
value: 0.96
- name: ROUGE-L (Question & Answer Generation)
type: rouge_l_question_answer_generation
value: 12.88
- name: METEOR (Question & Answer Generation)
type: meteor_question_answer_generation
value: 23.62
- name: BERTScore (Question & Answer Generation)
type: bertscore_question_answer_generation
value: 67.72
- name: MoverScore (Question & Answer Generation)
type: moverscore_question_answer_generation
value: 62.37
- name: >-
QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
value: 80.64
- name: >-
QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold
Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
value: 83.95
- name: >-
QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_precision_bertscore_question_answer_generation_gold_answer
value: 77.67
- name: >-
QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
value: 82.74
- name: >-
QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_recall_moverscore_question_answer_generation_gold_answer
value: 87.04
- name: >-
QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_precision_moverscore_question_answer_generation_gold_answer
value: 78.99
Model Card of lmqg/mbart-large-cc25-koquad-qg
This model is fine-tuned version of facebook/mbart-large-cc25 for question generation task on the lmqg/qg_koquad (dataset_name: default) via lmqg
.
Overview
- Language model: facebook/mbart-large-cc25
- Language: ko
- Training data: lmqg/qg_koquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="ko", model="lmqg/mbart-large-cc25-koquad-qg")
# model prediction
questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-koquad-qg")
output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 83.89 | default | lmqg/qg_koquad |
Bleu_1 | 26.92 | default | lmqg/qg_koquad |
Bleu_2 | 19.57 | default | lmqg/qg_koquad |
Bleu_3 | 14.52 | default | lmqg/qg_koquad |
Bleu_4 | 10.92 | default | lmqg/qg_koquad |
METEOR | 30.23 | default | lmqg/qg_koquad |
MoverScore | 82.95 | default | lmqg/qg_koquad |
ROUGE_L | 27.76 | default | lmqg/qg_koquad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 87.88 | default | lmqg/qg_koquad |
Bleu_1 | 42.94 | default | lmqg/qg_koquad |
Bleu_2 | 31.44 | default | lmqg/qg_koquad |
Bleu_3 | 19.38 | default | lmqg/qg_koquad |
Bleu_4 | 11.25 | default | lmqg/qg_koquad |
METEOR | 39.03 | default | lmqg/qg_koquad |
MoverScore | 84.85 | default | lmqg/qg_koquad |
QAAlignedF1Score (BERTScore) | 88.18 | default | lmqg/qg_koquad |
QAAlignedF1Score (MoverScore) | 85.53 | default | lmqg/qg_koquad |
QAAlignedPrecision (BERTScore) | 88.22 | default | lmqg/qg_koquad |
QAAlignedPrecision (MoverScore) | 85.62 | default | lmqg/qg_koquad |
QAAlignedRecall (BERTScore) | 88.15 | default | lmqg/qg_koquad |
QAAlignedRecall (MoverScore) | 85.46 | default | lmqg/qg_koquad |
ROUGE_L | 47.9 | default | lmqg/qg_koquad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/mbart-large-cc25-koquad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 67.72 | default | lmqg/qg_koquad |
Bleu_1 | 8.03 | default | lmqg/qg_koquad |
Bleu_2 | 4.3 | default | lmqg/qg_koquad |
Bleu_3 | 2.04 | default | lmqg/qg_koquad |
Bleu_4 | 0.96 | default | lmqg/qg_koquad |
METEOR | 23.62 | default | lmqg/qg_koquad |
MoverScore | 62.37 | default | lmqg/qg_koquad |
QAAlignedF1Score (BERTScore) | 80.64 | default | lmqg/qg_koquad |
QAAlignedF1Score (MoverScore) | 82.74 | default | lmqg/qg_koquad |
QAAlignedPrecision (BERTScore) | 77.67 | default | lmqg/qg_koquad |
QAAlignedPrecision (MoverScore) | 78.99 | default | lmqg/qg_koquad |
QAAlignedRecall (BERTScore) | 83.95 | default | lmqg/qg_koquad |
QAAlignedRecall (MoverScore) | 87.04 | default | lmqg/qg_koquad |
ROUGE_L | 12.88 | default | lmqg/qg_koquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_koquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/mbart-large-cc25
- max_length: 512
- max_length_output: 32
- epoch: 6
- batch: 4
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}