File size: 9,880 Bytes
eb2574a
 
 
 
 
 
 
 
 
e3887d3
eb2574a
 
 
 
 
 
e3887d3
eb2574a
e3887d3
eb2574a
e3887d3
eb2574a
 
e3887d3
eb2574a
 
 
 
 
 
 
 
 
bf38cb7
 
0063059
bf38cb7
 
0063059
bf38cb7
 
0063059
bf38cb7
 
0063059
bf38cb7
 
0063059
d822749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0063059
d822749
 
0063059
d822749
 
0063059
d822749
 
0063059
d822749
 
0063059
d822749
 
0063059
eb2574a
 
e3887d3
0063059
eb2574a
 
 
 
e3887d3
eb2574a
 
 
a357137
eb2574a
 
a357137
eb2574a
a357137
0063059
a357137
e3887d3
0063059
a357137
e3887d3
a357137
 
eb2574a
a357137
 
 
0063059
e3887d3
 
cb7f057
eb2574a
 
0063059
eb2574a
 
e3887d3
eb2574a
0063059
 
 
 
 
 
 
 
 
 
eb2574a
 
d822749
326fade
0063059
 
d822749
 
 
 
 
 
 
0063059
 
 
 
 
 
d822749
326fade
eb2574a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3887d3
eb2574a
 
a357137
cb7f057
a357137
cb7f057
a357137
cb7f057
 
 
 
 
 
 
 
a357137
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: de
datasets:
- lmqg/qg_dequad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>"
  example_title: "Question Generation Example 1" 
- text: "das erste weltweit errichtete Hermann Brehmer <hl> 1855 <hl> im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen)."
  example_title: "Question Generation Example 2" 
- text: "Er muss Zyperngrieche sein und wird direkt für <hl> fünf Jahre <hl> gewählt (Art. 43 Abs. 1 der Verfassung) und verfügt über weitreichende Exekutivkompetenzen."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/mbart-large-cc25-dequad-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_dequad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 0.75
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 11.19
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 13.71
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 80.77
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 55.88
    - name: BLEU4 (Question & Answer Generation (with Gold Answer))
      type: bleu4_question_answer_generation_with_gold_answer
      value: 0.09
    - name: ROUGE-L (Question & Answer Generation (with Gold Answer))
      type: rouge_l_question_answer_generation_with_gold_answer
      value: 16.18
    - name: METEOR (Question & Answer Generation (with Gold Answer))
      type: meteor_question_answer_generation_with_gold_answer
      value: 19.96
    - name: BERTScore (Question & Answer Generation (with Gold Answer))
      type: bertscore_question_answer_generation_with_gold_answer
      value: 74.4
    - name: MoverScore (Question & Answer Generation (with Gold Answer))
      type: moverscore_question_answer_generation_with_gold_answer
      value: 52.95
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 90.66
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 90.69
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 90.64
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 65.36
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 65.36
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 65.37
---

# Model Card of `lmqg/mbart-large-cc25-dequad-qg`
This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation task on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25)   
- **Language:** de  
- **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="de", model="lmqg/mbart-large-cc25-dequad-qg")

# model prediction
questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-dequad-qg")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-dequad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   80.77 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_1     |   10.96 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_2     |    4.48 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_3     |    1.91 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_4     |    0.75 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| METEOR     |   13.71 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| MoverScore |   55.88 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| ROUGE_L    |   11.19 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |


- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-dequad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_dequad.default.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore                       |   74.4  | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_1                          |   14.89 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_2                          |    6.69 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_3                          |    0.64 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_4                          |    0.09 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| METEOR                          |   19.96 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| MoverScore                      |   52.95 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedF1Score (BERTScore)    |   90.66 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedF1Score (MoverScore)   |   65.36 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (BERTScore)  |   90.64 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (MoverScore) |   65.37 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (BERTScore)     |   90.69 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (MoverScore)    |   65.36 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| ROUGE_L                         |   16.18 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_dequad
 - dataset_name: default
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: None
 - model: facebook/mbart-large-cc25
 - max_length: 512
 - max_length_output: 32
 - epoch: 11
 - batch: 4
 - lr: 0.0001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 16
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-dequad-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```