File size: 3,892 Bytes
ec9d182 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 1"
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 2"
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/bart-large-subjqa-electronics
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: electronics
args: electronics
metrics:
- name: BLEU4
type: bleu4
value: 0.051782881162838426
- name: ROUGE-L
type: rouge-l
value: 0.2886833117152989
- name: METEOR
type: meteor
value: 0.25170852692044277
- name: BERTScore
type: bertscore
value: 0.9351121607948752
- name: MoverScore
type: moverscore
value: 0.6568060756261695
---
# Language Models Fine-tuning on Question Generation: `lmqg/bart-large-subjqa-electronics`
This model is fine-tuned version of [lmqg/bart-large-squad](https://huggingface.co/lmqg/bart-large-squad) for question generation task on the
[lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: electronics).
This model is continuously fine-tuned with [lmqg/bart-large-squad](https://huggingface.co/lmqg/bart-large-squad).
### Overview
- **Language model:** [lmqg/bart-large-squad](https://huggingface.co/lmqg/bart-large-squad)
- **Language:** en
- **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (electronics)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [TBA](TBA)
### Usage
```python
from transformers import pipeline
model_path = 'lmqg/bart-large-subjqa-electronics'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
input_text = 'generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.'
question = pipe(input_text)
```
## Evaluation Metrics
### Metrics
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | electronics | 0.051782881162838426 | 0.2886833117152989 | 0.25170852692044277 | 0.9351121607948752 | 0.6568060756261695 | [link](https://huggingface.co/lmqg/bart-large-subjqa-electronics/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.electronics.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_subjqa
- dataset_name: electronics
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: lmqg/bart-large-squad
- max_length: 512
- max_length_output: 32
- epoch: 4
- batch: 8
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-large-subjqa-electronics/raw/main/trainer_config.json).
## Citation
TBA
|