File size: 5,397 Bytes
ccc56cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe089e4
ccc56cf
fe089e4
ccc56cf
fe089e4
ccc56cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a483a3
ccc56cf
 
 
 
 
c95a949
ccc56cf
c95a949
ccc56cf
 
5c7ec50
c95a949
 
 
 
5c7ec50
c95a949
5c7ec50
c95a949
 
 
 
 
 
 
 
 
 
ccc56cf
 
 
 
 
 
5c7ec50
ccc56cf
 
5c7ec50
ccc56cf
 
5c7ec50
 
 
 
 
 
 
ccc56cf
5c7ec50
 
ccc56cf
5c7ec50
 
 
 
fe089e4
c95a949
ccc56cf
 
 
 
 
 
 
 
 
fe089e4
ccc56cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7ec50
c95a949
 
5c7ec50
c95a949
5c7ec50
c95a949
 
 
 
 
 
 
 
5c7ec50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "<hl>  Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl>"
  example_title: "Question Generation Example 1" 
- text: "<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl>"
  example_title: "Question Generation Example 2" 
- text: "<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records . <hl>"
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/bart-base-squad-no-answer
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_squad
      type: default
      args: default
    metrics:
    - name: BLEU4
      type: bleu4
      value: 0.2196802868921128
    - name: ROUGE-L
      type: rouge-l
      value: 0.49695872760015636
    - name: METEOR
      type: meteor
      value: 0.23715466422245665
    - name: BERTScore
      type: bertscore
      value: 0.9037814976684458
    - name: MoverScore
      type: moverscore
      value: 0.6307014769529157
---

# Model Card of `lmqg/bart-base-squad-no-answer`
This model is fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) for question generation task on the 
[lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
This model is fine-tuned without answer information, i.e. generate a question only given a paragraph (note that normal model is fine-tuned to generate a question given a pargraph and an associated answer in the paragraph).

Please cite our paper if you use the model ([https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)).

```

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```

### Overview
- **Language model:** [facebook/bart-base](https://huggingface.co/facebook/bart-base)   
- **Language:** en  
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python

from lmqg import TransformersQG
# initialize model
model = TransformersQG(language='en', model='lmqg/bart-base-squad-no-answer')
# model prediction
question = model.generate_q(list_context=["William Turner was an English painter who specialised in watercolour landscapes"], list_answer=["William Turner"])

```

- With `transformers`
```python

from transformers import pipeline
# initialize model
pipe = pipeline("text2text-generation", 'lmqg/bart-base-squad-no-answer')
# question generation
question = pipe('<hl>  Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl>')

```

## Evaluation Metrics


### Metrics

| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | default | 0.22 | 0.497 | 0.237 | 0.904 | 0.631 | [link](https://huggingface.co/lmqg/bart-base-squad-no-answer/raw/main/eval/metric.first.sentence.paragraph_sentence.question.lmqg_qg_squad.default.json) | 




## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_squad
 - dataset_name: default
 - input_types: ['paragraph_sentence']
 - output_types: ['question']
 - prefix_types: None
 - model: facebook/bart-base
 - max_length: 512
 - max_length_output: 32
 - epoch: 4
 - batch: 32
 - lr: 0.0001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 8
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-squad-no-answer/raw/main/trainer_config.json).

## Citation
```

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```