File size: 5,397 Bytes
ccc56cf fe089e4 ccc56cf fe089e4 ccc56cf fe089e4 ccc56cf 7a483a3 ccc56cf c95a949 ccc56cf c95a949 ccc56cf 5c7ec50 c95a949 5c7ec50 c95a949 5c7ec50 c95a949 ccc56cf 5c7ec50 ccc56cf 5c7ec50 ccc56cf 5c7ec50 ccc56cf 5c7ec50 ccc56cf 5c7ec50 fe089e4 c95a949 ccc56cf fe089e4 ccc56cf 5c7ec50 c95a949 5c7ec50 c95a949 5c7ec50 c95a949 5c7ec50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl>"
example_title: "Question Generation Example 1"
- text: "<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl>"
example_title: "Question Generation Example 2"
- text: "<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records . <hl>"
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/bart-base-squad-no-answer
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.2196802868921128
- name: ROUGE-L
type: rouge-l
value: 0.49695872760015636
- name: METEOR
type: meteor
value: 0.23715466422245665
- name: BERTScore
type: bertscore
value: 0.9037814976684458
- name: MoverScore
type: moverscore
value: 0.6307014769529157
---
# Model Card of `lmqg/bart-base-squad-no-answer`
This model is fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) for question generation task on the
[lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
This model is fine-tuned without answer information, i.e. generate a question only given a paragraph (note that normal model is fine-tuned to generate a question given a pargraph and an associated answer in the paragraph).
Please cite our paper if you use the model ([https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)).
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
### Overview
- **Language model:** [facebook/bart-base](https://huggingface.co/facebook/bart-base)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language='en', model='lmqg/bart-base-squad-no-answer')
# model prediction
question = model.generate_q(list_context=["William Turner was an English painter who specialised in watercolour landscapes"], list_answer=["William Turner"])
```
- With `transformers`
```python
from transformers import pipeline
# initialize model
pipe = pipeline("text2text-generation", 'lmqg/bart-base-squad-no-answer')
# question generation
question = pipe('<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl>')
```
## Evaluation Metrics
### Metrics
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | default | 0.22 | 0.497 | 0.237 | 0.904 | 0.631 | [link](https://huggingface.co/lmqg/bart-base-squad-no-answer/raw/main/eval/metric.first.sentence.paragraph_sentence.question.lmqg_qg_squad.default.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_sentence']
- output_types: ['question']
- prefix_types: None
- model: facebook/bart-base
- max_length: 512
- max_length_output: 32
- epoch: 4
- batch: 32
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-squad-no-answer/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|