madhavatreplit commited on
Commit
e640449
1 Parent(s): 12cbb33

Update for README

Browse files
Files changed (1) hide show
  1. README.md +56 -6
README.md CHANGED
@@ -10,13 +10,13 @@ Developed by: Replit, Inc.
10
 
11
  Replit Code v1.5 is a 3.3B parameter Causal Language Model focused on **Code Completion**.
12
 
13
- The model is trained on 1T tokens of code (~200B tokens over 5 epochs, including linear cooldown) for 30 programming languages from a subset of permissively licensed code from Bigcode's [Stack Dedup V2 dataset](https://huggingface.co/datasets/bigcode/the-stack-dedup).
 
14
 
15
- We use the GPTNeoX tokenizer with a custom trained and optimized vocabulary of 32768 tokens that led to single-digit % points on compression while maintaining or improving coverage on our training corpus.
16
 
17
  The model has been trained on the [MosaicML](https://www.mosaicml.com/) platform on 128 H100-80GB GPUs.
18
 
19
- The model has a context window size of 4096 tokens.
20
 
21
  ## Dependancies
22
  You will need to install the latest versions of the following dependencies:
@@ -26,9 +26,57 @@ torch
26
  transformers
27
  ```
28
 
29
- ## How to Use (Coming Soon!)
30
 
31
- (Details and code examples coming soon!)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ## Intended Use
34
 
@@ -36,5 +84,7 @@ Replit intends this model be used by anyone as a foundational model for applicat
36
 
37
  The model is trained specifically for code completion tasks.
38
 
 
 
39
  ## Limitations
40
- The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters, and such content may be reflected in model generated text. We recommend that users exercise reasonable caution when using in production systems. Do not use for any applications that may cause harm or distress to individuals or groups.
 
10
 
11
  Replit Code v1.5 is a 3.3B parameter Causal Language Model focused on **Code Completion**.
12
 
13
+ The model is trained in `bfloat16` on 1T tokens of code (~200B tokens over 5 epochs, including linear cooldown) for 30 programming languages from a subset of permissively licensed code from Bigcode's [Stack Dedup V2 dataset](https://huggingface.co/datasets/bigcode/the-stack-dedup) and a dev-oriented samples from StackExchange.
14
+ The context size is 4096 tokens can be extended using techniques on its ALiBi positional embeddings.
15
 
16
+ We use the GPTNeoX tokenizer with a custom trained and optimized vocabulary of 32768 tokens. This custom vocabulary led to single-digit % points on compression while maintaining or improving coverage on our training corpus.
17
 
18
  The model has been trained on the [MosaicML](https://www.mosaicml.com/) platform on 128 H100-80GB GPUs.
19
 
 
20
 
21
  ## Dependancies
22
  You will need to install the latest versions of the following dependencies:
 
26
  transformers
27
  ```
28
 
29
+ ## How to Use
30
 
31
+ ### Generation
32
+
33
+ You can generate code using the `transformers` library as follows:
34
+
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained('replit/replit-code-v1_5-3b', trust_remote_code=True)
39
+ model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1_5-3b', trust_remote_code=True)
40
+
41
+ x = tokenizer.encode('def fibonacci(n): ', return_tensors='pt')
42
+ y = model.generate(x, max_length=100, do_sample=True, top_p=0.95, top_k=4, temperature=0.2, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
43
+
44
+ # decoding
45
+ generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
46
+ print(generated_code)
47
+ ```
48
+
49
+ Experiment with different decoding methods and parameters to get the best results for your use case.
50
+
51
+ ### Using Triton Implementation of Flash Attention
52
+
53
+ ```python
54
+ import torch
55
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
56
+
57
+ config = AutoConfig.from_pretrained(
58
+ "replit/replit-code-v1_5-3b",
59
+ trust_remote_code=True
60
+ )
61
+ config.attn_config['attn_impl'] = 'triton'
62
+
63
+ # load model
64
+ tokenizer = AutoTokenizer.from_pretrained('replit/replit-code-v1_5-3b', trust_remote_code=True)
65
+ model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1_5-3b', config=config, trust_remote_code=True)
66
+ model.to(device='cuda:0', dtype=torch.bfloat16)
67
+
68
+ # forward pass
69
+ x = tokenizer.encode('def fibonacci(n): ', return_tensors='pt').to(device='cuda:0')
70
+ x = x.to(device='cuda:0')
71
+ y = model.generate(x, max_length=100, do_sample=True, top_p=0.95, top_k=4, temperature=0.2, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
72
+
73
+
74
+ # decoding
75
+ generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
76
+ print(generated_code)
77
+ ```
78
+
79
+ Experiment with different decoding methods and parameters to get the best results for your use case. We recommend experimenting with `temperature` and `reptition_penalty`for optimal performance on your use case!
80
 
81
  ## Intended Use
82
 
 
84
 
85
  The model is trained specifically for code completion tasks.
86
 
87
+
88
+
89
  ## Limitations
90
+ The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing and toxicity and profanity filters, and such content may be reflected in model generated text. We recommend that users exercise reasonable caution when using in production systems. Do not use for any applications that may cause harm or distress to individuals or groups.