Commit
•
ce1f658
1
Parent(s):
1076fcf
Add files for release (#1)
Browse files- Add files for release (9ed598fad7885d062e25157bbd3f549afd0964cc)
Co-authored-by: Madhav <madhavatreplit@users.noreply.huggingface.co>
- README.md +101 -0
- attention.py +409 -0
- config.json +46 -0
- configuration_replit_lm.py +168 -0
- generation_config.json +5 -0
- gpt_blocks.py +90 -0
- low_precision_layernorm.py +35 -0
- param_init_fns.py +464 -0
- pytorch_model.bin +3 -0
- replit_lm.py +453 -0
- replit_lm_tokenizer.py +161 -0
- special_tokens_map.json +5 -0
- spiece.model +3 -0
- tokenizer_config.json +18 -0
README.md
CHANGED
@@ -1,3 +1,104 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- bigcode/the-stack-dedup
|
5 |
---
|
6 |
+
|
7 |
+
|
8 |
+
# replit-code-v1-3b
|
9 |
+
|
10 |
+
`replit-code-v1-3b` is a 2.7B model. It is trained on the Stack Dedup v1.2 dataset.
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
## Model
|
15 |
+
|
16 |
+
|
17 |
+
```python
|
18 |
+
from transformers import AutoModelForCausalLM
|
19 |
+
|
20 |
+
# load model
|
21 |
+
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
22 |
+
```
|
23 |
+
|
24 |
+
To use the optimized Triton implementation of FlashAttention on GPUs with BF16 precision, move the model to `bfloat16` and use it as follows:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoModelForCausalLM
|
28 |
+
|
29 |
+
# load model
|
30 |
+
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True, attn_impl='triton')
|
31 |
+
model.to(device='cuda:0', dtype=torch.bfloat16)
|
32 |
+
|
33 |
+
# forward pass
|
34 |
+
x = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
|
35 |
+
x = x.to(device='cuda:0', dtype=torch.bfloat16)
|
36 |
+
y = model(x)
|
37 |
+
|
38 |
+
```
|
39 |
+
|
40 |
+
Note that `trust_remote_code=True` is passed to the `from_pretrained` method because ReplitLM is not a class in the
|
41 |
+
[Transformers](https://huggingface.co/docs/transformers/index) library.
|
42 |
+
|
43 |
+
## Tokenizer
|
44 |
+
|
45 |
+
We have trained a custom SentencePiece Unigram tokenizer optimized with a vocabulary specifically for code of 32768 tokens.
|
46 |
+
|
47 |
+
Note that using this requires the `sentencepiece` library to be installed.
|
48 |
+
|
49 |
+
The tokenizer can be used as follows:
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import AutoTokenizer
|
53 |
+
|
54 |
+
# load tokenizer
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
56 |
+
|
57 |
+
# single input encoding + generation
|
58 |
+
x = tokenizer.encode('def hello():\n print("hello world")\n', return_tensors='pt')
|
59 |
+
y = model.generate(x)
|
60 |
+
|
61 |
+
# decoding, clean_up_tokenization_spaces=False to ensure syntactical correctness
|
62 |
+
generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
63 |
+
print(generated_code)
|
64 |
+
```
|
65 |
+
|
66 |
+
Note that:
|
67 |
+
- `trust_remote_code=True` is passed to the `from_pretrained` method because ReplitLM is not a class in the [Transformers](https://huggingface.co/docs/transformers/index) library.
|
68 |
+
- `clean_up_tokenization_spaces=False` is meant to avoid removing spaces in the output, because that would affect the syntactical correctness of the generated code.
|
69 |
+
|
70 |
+
|
71 |
+
## Generation
|
72 |
+
|
73 |
+
You can generate code using the `transformers` library as follows:
|
74 |
+
|
75 |
+
```python
|
76 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
77 |
+
model = transformers.AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
78 |
+
|
79 |
+
x = tokenizer.encode('def fibonacci(n): ', return_tensors='pt')
|
80 |
+
y = model.generate(x, max_length=100, do_sample=True, top_p=0.95, top_k=4, temperature=0.2, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
81 |
+
|
82 |
+
# decoding, clean_up_tokenization_spaces=False to ensure syntactical correctness
|
83 |
+
generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
84 |
+
print(generated_code)
|
85 |
+
```
|
86 |
+
|
87 |
+
Experiment with different decoding methods and parameters to get the best results for your use case.
|
88 |
+
|
89 |
+
## Post Processing
|
90 |
+
|
91 |
+
Note that as with all code generation models, post-processing of the generated code is important. In particular, the following post-processing steps are recommended:
|
92 |
+
- stop generation when the EOS token is encountered
|
93 |
+
- remove trailing whitespaces
|
94 |
+
- set `max_tokens` to a reasonable value based on your completion use case
|
95 |
+
- truncate generation to stop words such as `return`, `def`, "```", "`\n\n\n`" to avoid generating incomplete code when `max_tokens` is larger than the length of the expected generated code.
|
96 |
+
|
97 |
+
## Inference
|
98 |
+
Coming soon.
|
99 |
+
|
100 |
+
## Evaluation
|
101 |
+
Coming soon.
|
102 |
+
|
103 |
+
## Model Hash
|
104 |
+
5bc28ce32c6f9aec935ead7b60ea1c46
|
attention.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Attention layers."""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from einops import rearrange
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
from .low_precision_layernorm import LPLayerNorm
|
15 |
+
|
16 |
+
|
17 |
+
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int,
|
18 |
+
original_is_causal: bool):
|
19 |
+
if original_is_causal and num_query_tokens != num_key_tokens:
|
20 |
+
if num_query_tokens != 1:
|
21 |
+
raise NotImplementedError(
|
22 |
+
'ReplitLM does not support query and key with different number of tokens, unless number of query tokens is 1.'
|
23 |
+
)
|
24 |
+
else:
|
25 |
+
return False
|
26 |
+
return original_is_causal
|
27 |
+
|
28 |
+
|
29 |
+
def scaled_multihead_dot_product_attention(
|
30 |
+
query,
|
31 |
+
key,
|
32 |
+
value,
|
33 |
+
n_heads,
|
34 |
+
softmax_scale=None,
|
35 |
+
attn_bias=None,
|
36 |
+
key_padding_mask=None,
|
37 |
+
is_causal=False,
|
38 |
+
dropout_p=0.0,
|
39 |
+
training=False,
|
40 |
+
needs_weights=False,
|
41 |
+
):
|
42 |
+
|
43 |
+
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
44 |
+
k = rearrange(key, 'b s (h d) -> b h d s', h=n_heads) # includes key.t()
|
45 |
+
v = rearrange(value, 'b s (h d) -> b h s d', h=n_heads)
|
46 |
+
|
47 |
+
min_val = torch.finfo(q.dtype).min
|
48 |
+
|
49 |
+
b, _, s_q, d = q.shape
|
50 |
+
s_k = k.size(-1)
|
51 |
+
|
52 |
+
if softmax_scale is None:
|
53 |
+
softmax_scale = 1 / math.sqrt(d)
|
54 |
+
|
55 |
+
attn_weight = q.matmul(k) * softmax_scale
|
56 |
+
|
57 |
+
if attn_bias is not None:
|
58 |
+
if (attn_bias.size(-1) != 1 and
|
59 |
+
attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and
|
60 |
+
attn_bias.size(-2) != s_q):
|
61 |
+
raise RuntimeError(
|
62 |
+
f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.'
|
63 |
+
)
|
64 |
+
attn_weight = attn_weight + attn_bias
|
65 |
+
|
66 |
+
if key_padding_mask is not None:
|
67 |
+
if attn_bias is not None:
|
68 |
+
warnings.warn(
|
69 |
+
'Propogating key_padding_mask to the attention module ' +
|
70 |
+
'and applying it within the attention module can cause ' +
|
71 |
+
'unneccessary computation/memory usage. Consider integrating ' +
|
72 |
+
'into attn_bias once and passing that to each attention ' +
|
73 |
+
'module instead.'
|
74 |
+
)
|
75 |
+
attn_weight = attn_weight.masked_fill(
|
76 |
+
~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
77 |
+
|
78 |
+
if is_causal:
|
79 |
+
s = max(s_q, s_k)
|
80 |
+
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
81 |
+
causal_mask = causal_mask.tril()
|
82 |
+
causal_mask = causal_mask.to(torch.bool)
|
83 |
+
causal_mask = ~causal_mask
|
84 |
+
causal_mask = causal_mask[-s_q:, -s_k:]
|
85 |
+
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k),
|
86 |
+
min_val)
|
87 |
+
|
88 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
89 |
+
|
90 |
+
if dropout_p:
|
91 |
+
attn_weight = torch.nn.functional.dropout(attn_weight,
|
92 |
+
p=dropout_p,
|
93 |
+
training=training,
|
94 |
+
inplace=True)
|
95 |
+
|
96 |
+
out = attn_weight.matmul(v)
|
97 |
+
out = rearrange(out, 'b h s d -> b s (h d)')
|
98 |
+
|
99 |
+
if needs_weights:
|
100 |
+
return out, attn_weight
|
101 |
+
return out, None
|
102 |
+
|
103 |
+
|
104 |
+
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
105 |
+
for tensor in tensors:
|
106 |
+
if tensor.dtype not in valid_dtypes:
|
107 |
+
raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.')
|
108 |
+
if not tensor.is_cuda:
|
109 |
+
raise TypeError(
|
110 |
+
f'Inputs must be cuda tensors ({tensor.is_cuda=}).')
|
111 |
+
|
112 |
+
|
113 |
+
def flash_attn_fn(
|
114 |
+
query,
|
115 |
+
key,
|
116 |
+
value,
|
117 |
+
n_heads,
|
118 |
+
softmax_scale=None,
|
119 |
+
attn_bias=None,
|
120 |
+
key_padding_mask=None,
|
121 |
+
is_causal=False,
|
122 |
+
dropout_p=0.0,
|
123 |
+
training=False,
|
124 |
+
needs_weights=False,
|
125 |
+
):
|
126 |
+
try:
|
127 |
+
from flash_attn import bert_padding, flash_attn_interface
|
128 |
+
except:
|
129 |
+
raise RuntimeError('Please install flash_attn==0.2.8')
|
130 |
+
|
131 |
+
check_valid_inputs(query, key, value)
|
132 |
+
|
133 |
+
if attn_bias is not None:
|
134 |
+
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
135 |
+
|
136 |
+
batch_size, seqlen = query.shape[:2]
|
137 |
+
|
138 |
+
if key_padding_mask is None:
|
139 |
+
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
140 |
+
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
141 |
+
|
142 |
+
query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input(
|
143 |
+
query, query_padding_mask)
|
144 |
+
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
145 |
+
|
146 |
+
key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input(
|
147 |
+
key, key_padding_mask)
|
148 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
149 |
+
|
150 |
+
value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask)
|
151 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
152 |
+
|
153 |
+
dropout_p = dropout_p if training else 0.0
|
154 |
+
|
155 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
156 |
+
|
157 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(
|
158 |
+
query_unpad,
|
159 |
+
key_unpad,
|
160 |
+
value_unpad,
|
161 |
+
cu_seqlens_q,
|
162 |
+
cu_seqlens_k,
|
163 |
+
max_seqlen_q,
|
164 |
+
max_seqlen_k,
|
165 |
+
dropout_p,
|
166 |
+
softmax_scale=softmax_scale,
|
167 |
+
causal=reset_is_causal,
|
168 |
+
return_attn_probs=needs_weights)
|
169 |
+
|
170 |
+
output = bert_padding.pad_input(
|
171 |
+
rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size,
|
172 |
+
seqlen)
|
173 |
+
return output, None
|
174 |
+
|
175 |
+
|
176 |
+
def triton_flash_attn_fn(
|
177 |
+
query,
|
178 |
+
key,
|
179 |
+
value,
|
180 |
+
n_heads,
|
181 |
+
softmax_scale=None,
|
182 |
+
attn_bias=None,
|
183 |
+
key_padding_mask=None,
|
184 |
+
is_causal=False,
|
185 |
+
dropout_p=0.0,
|
186 |
+
training=False,
|
187 |
+
needs_weights=False,
|
188 |
+
):
|
189 |
+
try:
|
190 |
+
from flash_attn import flash_attn_triton # type: ignore
|
191 |
+
except:
|
192 |
+
raise RuntimeError(
|
193 |
+
'Please install flash_attn==0.2.8 and triton==2.0.0.dev20221202.')
|
194 |
+
|
195 |
+
check_valid_inputs(query, key, value)
|
196 |
+
|
197 |
+
if dropout_p:
|
198 |
+
raise NotImplementedError(
|
199 |
+
f'Dropout not implemented for attn_impl: triton.')
|
200 |
+
|
201 |
+
if needs_weights:
|
202 |
+
raise NotImplementedError(
|
203 |
+
f'attn_impl: triton cannot return attn weights.')
|
204 |
+
|
205 |
+
if key_padding_mask is not None:
|
206 |
+
warnings.warn(
|
207 |
+
'Propagating key_padding_mask to the attention module ' +
|
208 |
+
'and applying it within the attention module can cause ' +
|
209 |
+
'unnecessary computation/memory usage. Consider integrating ' +
|
210 |
+
'into attn_bias once and passing that to each attention ' +
|
211 |
+
'module instead.'
|
212 |
+
)
|
213 |
+
b_size, s_k = key_padding_mask.shape[:2]
|
214 |
+
|
215 |
+
if attn_bias is None:
|
216 |
+
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
217 |
+
|
218 |
+
attn_bias = attn_bias.masked_fill(
|
219 |
+
~key_padding_mask.view((b_size, 1, 1, s_k)),
|
220 |
+
torch.finfo(query.dtype).min)
|
221 |
+
|
222 |
+
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
223 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=n_heads)
|
224 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=n_heads)
|
225 |
+
|
226 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
227 |
+
attn_output = flash_attn_triton.flash_attn_func(query, key, value,
|
228 |
+
attn_bias, reset_is_causal,
|
229 |
+
softmax_scale)
|
230 |
+
|
231 |
+
output = attn_output.view(*attn_output.shape[:2], -1)
|
232 |
+
|
233 |
+
return output, None
|
234 |
+
|
235 |
+
|
236 |
+
class MultiheadAttention(nn.Module):
|
237 |
+
"""Multi-head self attention.
|
238 |
+
|
239 |
+
Using torch or triton attention implemetation enables user to also use
|
240 |
+
additive bias.
|
241 |
+
"""
|
242 |
+
|
243 |
+
def __init__(
|
244 |
+
self,
|
245 |
+
d_model: int,
|
246 |
+
n_heads: int,
|
247 |
+
attn_impl: str = 'triton',
|
248 |
+
attn_clip_qkv: Optional[float] = None,
|
249 |
+
attn_qk_ln: bool = False,
|
250 |
+
softmax_scale: Optional[float] = None,
|
251 |
+
attn_pdrop: float = 0.0,
|
252 |
+
low_precision_layernorm: bool = False,
|
253 |
+
device: Optional[str] = None,
|
254 |
+
):
|
255 |
+
super().__init__()
|
256 |
+
|
257 |
+
self.attn_impl = attn_impl
|
258 |
+
self.clip_qkv = attn_clip_qkv
|
259 |
+
self.attn_qk_ln = attn_qk_ln
|
260 |
+
|
261 |
+
self.d_model = d_model
|
262 |
+
self.n_heads = n_heads
|
263 |
+
self.softmax_scale = softmax_scale
|
264 |
+
if self.softmax_scale is None:
|
265 |
+
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
266 |
+
self.attn_dropout_p = attn_pdrop
|
267 |
+
|
268 |
+
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
269 |
+
# for param init fn; enables shape based init of fused layers
|
270 |
+
fuse_splits = (d_model, 2 * d_model)
|
271 |
+
self.Wqkv._fused = (0, fuse_splits) # type: ignore
|
272 |
+
|
273 |
+
if self.attn_qk_ln:
|
274 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
275 |
+
self.q_ln = layernorm_class(self.d_model, device=device)
|
276 |
+
self.k_ln = layernorm_class(self.d_model, device=device)
|
277 |
+
|
278 |
+
if self.attn_impl == 'flash':
|
279 |
+
self.attn_fn = flash_attn_fn
|
280 |
+
elif self.attn_impl == 'triton':
|
281 |
+
self.attn_fn = triton_flash_attn_fn
|
282 |
+
warnings.warn(
|
283 |
+
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +
|
284 |
+
'it uses more memory. When training larger models this can trigger ' +
|
285 |
+
'alloc retries which hurts performance. If encountered, we recommend ' +
|
286 |
+
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
287 |
+
elif self.attn_impl == 'torch':
|
288 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
289 |
+
if torch.cuda.is_available():
|
290 |
+
warnings.warn(
|
291 |
+
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +
|
292 |
+
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +
|
293 |
+
'we recommend using `attn_impl: triton`.'
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
297 |
+
|
298 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
299 |
+
self.out_proj._is_residual = True # type: ignore
|
300 |
+
|
301 |
+
def forward(self,
|
302 |
+
x,
|
303 |
+
past_key_value=None,
|
304 |
+
attn_bias=None,
|
305 |
+
attention_mask=None,
|
306 |
+
is_causal=True,
|
307 |
+
needs_weights=False):
|
308 |
+
qkv = self.Wqkv(x)
|
309 |
+
|
310 |
+
if self.clip_qkv:
|
311 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
312 |
+
|
313 |
+
query, key, value = qkv.chunk(3, dim=2)
|
314 |
+
|
315 |
+
key_padding_mask = attention_mask
|
316 |
+
|
317 |
+
if self.attn_qk_ln:
|
318 |
+
# Applying layernorm to qk
|
319 |
+
dtype = query.dtype
|
320 |
+
query = self.q_ln(query).to(dtype)
|
321 |
+
key = self.k_ln(key).to(dtype)
|
322 |
+
|
323 |
+
if past_key_value is not None:
|
324 |
+
if len(past_key_value) != 0:
|
325 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
326 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
327 |
+
|
328 |
+
past_key_value = (key, value)
|
329 |
+
|
330 |
+
if attn_bias is not None:
|
331 |
+
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
332 |
+
|
333 |
+
context, attn_weights = self.attn_fn(
|
334 |
+
query,
|
335 |
+
key,
|
336 |
+
value,
|
337 |
+
self.n_heads,
|
338 |
+
softmax_scale=self.softmax_scale,
|
339 |
+
attn_bias=attn_bias,
|
340 |
+
key_padding_mask=key_padding_mask,
|
341 |
+
is_causal=is_causal,
|
342 |
+
dropout_p=self.attn_dropout_p,
|
343 |
+
training=self.training,
|
344 |
+
needs_weights=needs_weights,
|
345 |
+
)
|
346 |
+
|
347 |
+
return self.out_proj(context), attn_weights, past_key_value
|
348 |
+
|
349 |
+
|
350 |
+
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal,
|
351 |
+
use_sequence_id):
|
352 |
+
if attn_impl == 'flash':
|
353 |
+
return None
|
354 |
+
elif attn_impl in ['torch', 'triton']:
|
355 |
+
if alibi:
|
356 |
+
if (prefix_lm or not causal) or use_sequence_id:
|
357 |
+
return (1, n_heads, seq_len, seq_len)
|
358 |
+
return (1, n_heads, 1, seq_len)
|
359 |
+
elif prefix_lm or use_sequence_id:
|
360 |
+
return (1, 1, seq_len, seq_len)
|
361 |
+
return None
|
362 |
+
else:
|
363 |
+
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
364 |
+
|
365 |
+
|
366 |
+
def attn_bias(attn_impl,
|
367 |
+
attn_bias,
|
368 |
+
n_heads,
|
369 |
+
seq_len,
|
370 |
+
causal=False,
|
371 |
+
alibi=False,
|
372 |
+
alibi_bias_max=8):
|
373 |
+
if attn_impl == 'flash':
|
374 |
+
return None
|
375 |
+
elif attn_impl in ['torch', 'triton']:
|
376 |
+
if alibi:
|
377 |
+
# in place add alibi to attn bias
|
378 |
+
device, dtype = attn_bias.device, attn_bias.dtype
|
379 |
+
attn_bias = attn_bias.add(
|
380 |
+
alibi_bias(n_heads,
|
381 |
+
seq_len,
|
382 |
+
full=not causal,
|
383 |
+
alibi_bias_max=alibi_bias_max,
|
384 |
+
device=device,
|
385 |
+
dtype=dtype))
|
386 |
+
return attn_bias
|
387 |
+
else:
|
388 |
+
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
389 |
+
|
390 |
+
|
391 |
+
def alibi_bias(n_heads,
|
392 |
+
seq_len,
|
393 |
+
full=False,
|
394 |
+
alibi_bias_max=8,
|
395 |
+
device=None,
|
396 |
+
dtype=None):
|
397 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=dtype,
|
398 |
+
device=device).view(1, 1, 1, seq_len)
|
399 |
+
if full:
|
400 |
+
# generate 1 x Heads x SeqLen x SeqLen alibi bias mask
|
401 |
+
# otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size)
|
402 |
+
alibi_bias = alibi_bias - torch.arange(
|
403 |
+
1 - seq_len, 1, dtype=dtype, device=device).view(1, 1, seq_len, 1)
|
404 |
+
alibi_bias = alibi_bias.abs().mul(-1)
|
405 |
+
|
406 |
+
m = torch.arange(1, n_heads + 1, dtype=dtype, device=device)
|
407 |
+
m = m.mul(alibi_bias_max / n_heads)
|
408 |
+
alibi_bias = alibi_bias * (1. / (2**m.view(1, n_heads, 1, 1)))
|
409 |
+
return alibi_bias
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "replit/replit-code-v1-3b",
|
3 |
+
"alibi": true,
|
4 |
+
"alibi_bias_max": 8,
|
5 |
+
"architectures": [
|
6 |
+
"ReplitLM"
|
7 |
+
],
|
8 |
+
"attn_clip_qkv": null,
|
9 |
+
"attn_impl": "torch",
|
10 |
+
"attn_pdrop": 0,
|
11 |
+
"attn_qk_ln": false,
|
12 |
+
"attn_uses_sequence_id": false,
|
13 |
+
"auto_map": {
|
14 |
+
"AutoConfig": "configuration_replit_lm.ReplitLMConfig",
|
15 |
+
"AutoModelForCausalLM": "replit_lm.ReplitLM"
|
16 |
+
},
|
17 |
+
"d_model": 2560,
|
18 |
+
"emb_init_std": null,
|
19 |
+
"emb_init_uniform_lim": null,
|
20 |
+
"emb_pdrop": 0,
|
21 |
+
"embedding_fraction": 1.0,
|
22 |
+
"fan_mode": "fan_in",
|
23 |
+
"init_device": "cpu",
|
24 |
+
"init_div_is_residual": true,
|
25 |
+
"init_gain": 0,
|
26 |
+
"init_nonlinearity": "relu",
|
27 |
+
"init_std": 0.02,
|
28 |
+
"logit_scale": null,
|
29 |
+
"low_precision_layernorm": true,
|
30 |
+
"max_seq_len": 2048,
|
31 |
+
"mlp_ratio": 4,
|
32 |
+
"model_type": "replit_lm",
|
33 |
+
"n_heads": 32,
|
34 |
+
"n_layers": 32,
|
35 |
+
"no_bias": true,
|
36 |
+
"param_init_fn": "kaiming_normal_",
|
37 |
+
"prefix_lm": false,
|
38 |
+
"resid_pdrop": 0,
|
39 |
+
"softmax_scale": null,
|
40 |
+
"tokenizer_name": "replit/replit-code-v1-3b",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.26.1",
|
43 |
+
"use_cache": false,
|
44 |
+
"verbose": 0,
|
45 |
+
"vocab_size": 32768
|
46 |
+
}
|
configuration_replit_lm.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Forked for ReplitLM"""
|
5 |
+
|
6 |
+
"""A HuggingFace-style model configuration."""
|
7 |
+
|
8 |
+
|
9 |
+
from typing import Optional, Tuple, Union
|
10 |
+
from transformers import PretrainedConfig
|
11 |
+
class ReplitLMConfig(PretrainedConfig):
|
12 |
+
model_type = 'replit_lm'
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
d_model: int = 2048,
|
17 |
+
n_heads: int = 16,
|
18 |
+
n_layers: int = 24,
|
19 |
+
mlp_ratio: int = 4,
|
20 |
+
max_seq_len: int = 2048,
|
21 |
+
vocab_size: int = 50368,
|
22 |
+
attn_pdrop: float = 0.0,
|
23 |
+
resid_pdrop: float = 0.0,
|
24 |
+
emb_pdrop: float = 0.0,
|
25 |
+
attn_impl: str = 'triton',
|
26 |
+
attn_qk_ln: bool = False,
|
27 |
+
attn_clip_qkv: Optional[float] = None,
|
28 |
+
softmax_scale: Optional[float] = None,
|
29 |
+
prefix_lm: Optional[bool] = False,
|
30 |
+
attn_uses_sequence_id: Optional[bool] = False,
|
31 |
+
alibi: bool = False,
|
32 |
+
alibi_bias_max: int = 8,
|
33 |
+
init_device: str = 'cpu',
|
34 |
+
logit_scale: Optional[Union[float, str]] = None,
|
35 |
+
no_bias: bool = False,
|
36 |
+
verbose: int = 0,
|
37 |
+
param_init_fn: str = 'kaiming_normal_',
|
38 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
39 |
+
init_std: float = 0.02,
|
40 |
+
emb_init_std: Optional[float] = None,
|
41 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float],
|
42 |
+
float]] = None,
|
43 |
+
init_gain: float = 0,
|
44 |
+
fan_mode: str = 'fan_in',
|
45 |
+
init_nonlinearity: str = 'relu',
|
46 |
+
embedding_fraction: float = 1.0,
|
47 |
+
low_precision_layernorm: bool = True,
|
48 |
+
use_cache: bool = False,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
"""The ReplitLM configuration class.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
d_model (int): The size of the embedding dimension of the model.
|
55 |
+
n_heads (int): The number of attention heads.
|
56 |
+
n_layers (int): The number of layers in the model.
|
57 |
+
mlp_ratio (int): The ratio of the up/down scale in the MLP.
|
58 |
+
max_seq_len (int): The maximum sequence length of the model.
|
59 |
+
vocab_size (int): The size of the vocabulary.
|
60 |
+
attn_pdrop (float): The dropout probability for the attention layers.
|
61 |
+
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
62 |
+
emb_pdrop (float): The dropout probability for the embedding layer.
|
63 |
+
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
64 |
+
attn_qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
65 |
+
attn_clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
66 |
+
this value.
|
67 |
+
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
68 |
+
use the default scale of ``1/sqrt(d_keys)``.
|
69 |
+
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
70 |
+
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
71 |
+
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
72 |
+
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
73 |
+
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
74 |
+
which sub-sequence each token belongs to.
|
75 |
+
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
76 |
+
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
77 |
+
alibi_bias_max (int): The maximum value of the alibi bias.
|
78 |
+
init_device (str): The device to use for parameter initialization.
|
79 |
+
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
80 |
+
no_bias (bool): Whether to use bias in all layers.
|
81 |
+
verbose (int): The verbosity level. 0 is silent.
|
82 |
+
param_init_fn (str): The parameter initialization scheme to use. One of 'default_', 'baseline_', 'kaiming_uniform_',
|
83 |
+
'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or 'xavier_normal_'.
|
84 |
+
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
85 |
+
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
86 |
+
if using the baseline_ parameter initialization scheme.
|
87 |
+
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
88 |
+
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
89 |
+
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
90 |
+
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
91 |
+
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
92 |
+
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
93 |
+
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
94 |
+
low_precision_layernorm (bool): Whether to use low precision layer normalization.
|
95 |
+
use_cache (bool): Whether or not the model should return the last key/values attentions
|
96 |
+
"""
|
97 |
+
self.d_model = d_model
|
98 |
+
self.n_heads = n_heads
|
99 |
+
self.n_layers = n_layers
|
100 |
+
self.mlp_ratio = mlp_ratio
|
101 |
+
self.max_seq_len = max_seq_len
|
102 |
+
self.vocab_size = vocab_size
|
103 |
+
self.attn_pdrop = attn_pdrop
|
104 |
+
self.resid_pdrop = resid_pdrop
|
105 |
+
self.emb_pdrop = emb_pdrop
|
106 |
+
self.attn_impl = attn_impl
|
107 |
+
self.attn_qk_ln = attn_qk_ln
|
108 |
+
self.attn_clip_qkv = attn_clip_qkv
|
109 |
+
self.softmax_scale = softmax_scale
|
110 |
+
self.prefix_lm = prefix_lm
|
111 |
+
self.attn_uses_sequence_id = attn_uses_sequence_id
|
112 |
+
self.alibi = alibi
|
113 |
+
self.alibi_bias_max = alibi_bias_max
|
114 |
+
self.init_device = init_device
|
115 |
+
self.logit_scale = logit_scale
|
116 |
+
self.no_bias = no_bias
|
117 |
+
self.verbose = verbose
|
118 |
+
self.param_init_fn = param_init_fn
|
119 |
+
self.init_div_is_residual = init_div_is_residual
|
120 |
+
self.init_std = init_std
|
121 |
+
self.emb_init_std = emb_init_std
|
122 |
+
self.emb_init_uniform_lim = emb_init_uniform_lim
|
123 |
+
self.init_std = init_std
|
124 |
+
self.init_gain = init_gain
|
125 |
+
self.fan_mode = fan_mode
|
126 |
+
self.init_nonlinearity = init_nonlinearity
|
127 |
+
self.embedding_fraction = embedding_fraction
|
128 |
+
self.low_precision_layernorm = low_precision_layernorm
|
129 |
+
self.use_cache = use_cache
|
130 |
+
if 'name' in kwargs:
|
131 |
+
del kwargs['name']
|
132 |
+
if 'loss_fn' in kwargs:
|
133 |
+
del kwargs['loss_fn']
|
134 |
+
super().__init__(**kwargs)
|
135 |
+
|
136 |
+
self._validate_config()
|
137 |
+
|
138 |
+
def _validate_config(self):
|
139 |
+
if self.d_model % self.n_heads != 0:
|
140 |
+
raise ValueError('d_model must be divisible by n_heads')
|
141 |
+
if any(prob < 0 or prob > 1
|
142 |
+
for prob in [self.attn_pdrop, self.resid_pdrop, self.emb_pdrop]):
|
143 |
+
raise ValueError(
|
144 |
+
'attn_pdrop, resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1'
|
145 |
+
)
|
146 |
+
if self.attn_impl not in ['torch', 'flash', 'triton']:
|
147 |
+
raise ValueError(f'Unknown attn_impl={self.attn_impl}')
|
148 |
+
if self.prefix_lm and self.attn_impl not in ['torch', 'triton']:
|
149 |
+
raise NotImplementedError(
|
150 |
+
'prefix_lm only implemented with torch and triton attention.')
|
151 |
+
if self.alibi and self.attn_impl not in ['torch', 'triton']:
|
152 |
+
raise NotImplementedError(
|
153 |
+
'alibi only implemented with torch and triton attention.')
|
154 |
+
if self.attn_uses_sequence_id and self.attn_impl not in [
|
155 |
+
'torch', 'triton'
|
156 |
+
]:
|
157 |
+
raise NotImplementedError(
|
158 |
+
'attn_uses_sequence_id only implemented with torch and triton attention.'
|
159 |
+
)
|
160 |
+
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
161 |
+
raise ValueError(
|
162 |
+
'model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!'
|
163 |
+
)
|
164 |
+
if isinstance(self.logit_scale,
|
165 |
+
str) and self.logit_scale != 'inv_sqrt_d_model':
|
166 |
+
raise ValueError(
|
167 |
+
f"{self.logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
168 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.26.1",
|
4 |
+
"use_cache": false
|
5 |
+
}
|
gpt_blocks.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""GPT Blocks used for the GPT Model."""
|
5 |
+
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
from .attention import MultiheadAttention
|
12 |
+
from .low_precision_layernorm import LPLayerNorm
|
13 |
+
|
14 |
+
|
15 |
+
class GPTMLP(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self,
|
18 |
+
d_model: int,
|
19 |
+
mlp_ratio: int,
|
20 |
+
device: Optional[str] = None):
|
21 |
+
super().__init__()
|
22 |
+
self.mlp_up = nn.Linear(d_model, mlp_ratio * d_model, device=device)
|
23 |
+
self.mlp_act = nn.GELU(approximate='none')
|
24 |
+
self.mlp_down = nn.Linear(mlp_ratio * d_model, d_model, device=device)
|
25 |
+
self.mlp_down._is_residual = True # type: ignore
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return self.mlp_down(self.mlp_act(self.mlp_up(x)))
|
29 |
+
|
30 |
+
|
31 |
+
class GPTBlock(nn.Module):
|
32 |
+
|
33 |
+
def __init__(self,
|
34 |
+
attn_impl: str,
|
35 |
+
d_model: int,
|
36 |
+
n_heads: int,
|
37 |
+
mlp_ratio: int,
|
38 |
+
attn_clip_qkv: Optional[float] = None,
|
39 |
+
attn_qk_ln: bool = False,
|
40 |
+
softmax_scale: Optional[float] = None,
|
41 |
+
attn_pdrop: float = 0.0,
|
42 |
+
alibi: bool = False,
|
43 |
+
resid_pdrop: float = 0.0,
|
44 |
+
low_precision_layernorm: bool = False,
|
45 |
+
device: Optional[str] = None,
|
46 |
+
**kwargs):
|
47 |
+
del kwargs # unused, just to capture any extra args from the config
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
51 |
+
|
52 |
+
self.ln_1 = layernorm_class(d_model, device=device)
|
53 |
+
self.attn = MultiheadAttention(
|
54 |
+
attn_impl=attn_impl,
|
55 |
+
attn_clip_qkv=attn_clip_qkv,
|
56 |
+
attn_qk_ln=attn_qk_ln,
|
57 |
+
softmax_scale=softmax_scale,
|
58 |
+
attn_pdrop=attn_pdrop,
|
59 |
+
d_model=d_model,
|
60 |
+
n_heads=n_heads,
|
61 |
+
device=device,
|
62 |
+
)
|
63 |
+
self.ln_2 = layernorm_class(d_model, device=device)
|
64 |
+
self.mlp = GPTMLP(
|
65 |
+
d_model=d_model,
|
66 |
+
mlp_ratio=mlp_ratio,
|
67 |
+
device=device,
|
68 |
+
)
|
69 |
+
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
70 |
+
self.resid_mlp_dropout = nn.Dropout(resid_pdrop)
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
x: torch.Tensor,
|
75 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
76 |
+
attn_bias: Optional[torch.Tensor] = None,
|
77 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
78 |
+
is_causal: bool = True,
|
79 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
80 |
+
a = self.ln_1(x)
|
81 |
+
b, _, past_key_value = self.attn(a,
|
82 |
+
past_key_value=past_key_value,
|
83 |
+
attn_bias=attn_bias,
|
84 |
+
attention_mask=attention_mask,
|
85 |
+
is_causal=is_causal)
|
86 |
+
x = x + self.resid_attn_dropout(b)
|
87 |
+
m = self.ln_2(x)
|
88 |
+
n = self.mlp(m)
|
89 |
+
x = x + self.resid_mlp_dropout(n)
|
90 |
+
return x, past_key_value
|
low_precision_layernorm.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
|
5 |
+
class LPLayerNorm(torch.nn.LayerNorm):
|
6 |
+
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
7 |
+
super().__init__(
|
8 |
+
normalized_shape=normalized_shape,
|
9 |
+
eps=eps,
|
10 |
+
elementwise_affine=elementwise_affine,
|
11 |
+
device=device,
|
12 |
+
dtype=dtype,
|
13 |
+
)
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
module_device = x.device
|
17 |
+
downcast_x = _cast_if_autocast_enabled(x)
|
18 |
+
downcast_weight = _cast_if_autocast_enabled(
|
19 |
+
self.weight) if self.weight is not None else self.weight
|
20 |
+
downcast_bias = _cast_if_autocast_enabled(
|
21 |
+
self.bias) if self.bias is not None else self.bias
|
22 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
23 |
+
return F.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
24 |
+
|
25 |
+
|
26 |
+
def _cast_if_autocast_enabled(tensor):
|
27 |
+
if torch.is_autocast_enabled():
|
28 |
+
if tensor.device.type == 'cuda':
|
29 |
+
dtype = torch.get_autocast_gpu_dtype()
|
30 |
+
elif tensor.device.type == 'cpu':
|
31 |
+
dtype = torch.get_autocast_cpu_dtype()
|
32 |
+
else:
|
33 |
+
raise NotImplementedError()
|
34 |
+
return tensor.to(dtype=dtype)
|
35 |
+
return tensor
|
param_init_fns.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
from collections.abc import Sequence
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
|
13 |
+
def torch_default_param_init_fn_(
|
14 |
+
module: nn.Module,
|
15 |
+
verbose: int = 0,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
del kwargs # unused, just to capture any extra args from the config
|
19 |
+
if verbose > 1:
|
20 |
+
warnings.warn(
|
21 |
+
f"Initializing network using module's reset_parameters attribute")
|
22 |
+
|
23 |
+
if hasattr(module, 'reset_parameters'):
|
24 |
+
module.reset_parameters() # type: ignore
|
25 |
+
|
26 |
+
|
27 |
+
def fused_init_helper_(module: nn.Module, init_fn_):
|
28 |
+
# parameter initialization is often based on the parameters shape.
|
29 |
+
# If a layer is fused, initialization should be based on the shapes
|
30 |
+
# of the original tensor instead of the shape of the fused tensor.
|
31 |
+
# Layers which are fused should have the _fused attibute defined.
|
32 |
+
# The first element of _fused is the dimension along which the tensor is fused.
|
33 |
+
# This is followed by an iterable of split indices."
|
34 |
+
|
35 |
+
_fused = getattr(module, '_fused', None)
|
36 |
+
|
37 |
+
if _fused is None:
|
38 |
+
raise RuntimeError(f'Internal logic error')
|
39 |
+
|
40 |
+
dim, splits = _fused
|
41 |
+
splits = (0, *splits, module.weight.size(dim)) # type: ignore
|
42 |
+
for s, e in zip(splits[:-1], splits[1:]):
|
43 |
+
slice_indices = [slice(None)] * module.weight.ndim # type: ignore
|
44 |
+
slice_indices[dim] = slice(s, e)
|
45 |
+
init_fn_(module.weight[slice_indices]) # type: ignore
|
46 |
+
|
47 |
+
|
48 |
+
def generic_param_init_fn_(
|
49 |
+
module: nn.Module,
|
50 |
+
init_fn_,
|
51 |
+
n_layers: int,
|
52 |
+
d_model: Optional[int] = None,
|
53 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
54 |
+
emb_init_std: Optional[float] = None,
|
55 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
56 |
+
verbose: int = 0,
|
57 |
+
**kwargs,
|
58 |
+
):
|
59 |
+
del kwargs # unused, just to capture any extra args from the config
|
60 |
+
if verbose > 1:
|
61 |
+
warnings.warn(
|
62 |
+
f'If model has bias parameters they are initialized to 0.')
|
63 |
+
|
64 |
+
# enable user to divide _is_residual weights by
|
65 |
+
# a value which defaults to math.sqrt(2 * cfg.n_layers)
|
66 |
+
init_div_is_residual = init_div_is_residual
|
67 |
+
|
68 |
+
if init_div_is_residual is False:
|
69 |
+
# not used, for pyright
|
70 |
+
div_is_residual = 1.0
|
71 |
+
elif init_div_is_residual is True:
|
72 |
+
div_is_residual = math.sqrt(2 * n_layers)
|
73 |
+
elif isinstance(init_div_is_residual, float) or isinstance(
|
74 |
+
init_div_is_residual, int):
|
75 |
+
div_is_residual = init_div_is_residual
|
76 |
+
elif isinstance(init_div_is_residual,
|
77 |
+
str) and init_div_is_residual.isnumeric():
|
78 |
+
# do not trust YAML parsing to always convert numbers to numbers
|
79 |
+
div_is_residual = float(init_div_is_residual)
|
80 |
+
else:
|
81 |
+
# not used, for pyright
|
82 |
+
div_is_residual = 1.0
|
83 |
+
raise ValueError(
|
84 |
+
f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}'
|
85 |
+
)
|
86 |
+
|
87 |
+
if init_div_is_residual is not False:
|
88 |
+
if verbose > 1:
|
89 |
+
warnings.warn(
|
90 |
+
f'Initializing _is_residual layers then dividing them by {div_is_residual}.' +
|
91 |
+
f'set `init_div_is_residual: false` in model config to disable this.'
|
92 |
+
)
|
93 |
+
|
94 |
+
if isinstance(module, nn.Linear):
|
95 |
+
# Linear
|
96 |
+
if hasattr(module, '_fused'):
|
97 |
+
fused_init_helper_(module, init_fn_)
|
98 |
+
else:
|
99 |
+
init_fn_(module.weight)
|
100 |
+
if module.bias is not None:
|
101 |
+
torch.nn.init.zeros_(module.bias)
|
102 |
+
|
103 |
+
if init_div_is_residual is not False and getattr(
|
104 |
+
module, '_is_residual', False):
|
105 |
+
with torch.no_grad():
|
106 |
+
module.weight.div_(div_is_residual)
|
107 |
+
|
108 |
+
elif isinstance(module, nn.Embedding):
|
109 |
+
# Embedding
|
110 |
+
if emb_init_std is not None:
|
111 |
+
std = emb_init_std
|
112 |
+
if std == 0:
|
113 |
+
warnings.warn(f'Embedding layer initialized to 0.')
|
114 |
+
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
115 |
+
if verbose > 1:
|
116 |
+
warnings.warn(
|
117 |
+
f'Embedding layer initialized using normal distribution with mean=0 and {std=}.'
|
118 |
+
)
|
119 |
+
elif emb_init_uniform_lim is not None:
|
120 |
+
lim = emb_init_uniform_lim
|
121 |
+
if isinstance(lim, Sequence):
|
122 |
+
if len(lim) > 2:
|
123 |
+
raise ValueError(
|
124 |
+
f'Uniform init requires a min and a max limit. User input: {lim}.'
|
125 |
+
)
|
126 |
+
if lim[0] == lim[1]:
|
127 |
+
warnings.warn(f'Embedding layer initialized to {lim[0]}.')
|
128 |
+
else:
|
129 |
+
if lim == 0:
|
130 |
+
warnings.warn(f'Embedding layer initialized to 0.')
|
131 |
+
lim = [-lim, lim]
|
132 |
+
a, b = lim
|
133 |
+
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
134 |
+
if verbose > 1:
|
135 |
+
warnings.warn(
|
136 |
+
f'Embedding layer initialized using uniform distribution in range {lim}.'
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
emb_init_fn_ = init_fn_
|
140 |
+
|
141 |
+
emb_init_fn_(module.weight)
|
142 |
+
|
143 |
+
elif isinstance(module, nn.LayerNorm):
|
144 |
+
# LayerNorm
|
145 |
+
if verbose > 1:
|
146 |
+
warnings.warn(
|
147 |
+
f'LayerNorm gamma weights are set to 1. If the layer has a bias it is initialized to 0.'
|
148 |
+
)
|
149 |
+
torch.nn.init.ones_(module.weight)
|
150 |
+
if module.bias is not None:
|
151 |
+
torch.nn.init.zeros_(module.bias)
|
152 |
+
|
153 |
+
elif isinstance(module, nn.MultiheadAttention):
|
154 |
+
# torch's MultiheadAttention
|
155 |
+
if module._qkv_same_embed_dim:
|
156 |
+
assert module.in_proj_weight is not None
|
157 |
+
assert module.q_proj_weight is None and module.k_proj_weight is None and module.v_proj_weight is None
|
158 |
+
assert d_model is not None
|
159 |
+
# in_proj_weight is actually 3 layers and should be split up for width based init
|
160 |
+
_d = d_model
|
161 |
+
splits = (0, _d, 2 * _d, 3 * _d)
|
162 |
+
for s, e in zip(splits[:-1], splits[1:]):
|
163 |
+
init_fn_(module.in_proj_weight[s:e])
|
164 |
+
else:
|
165 |
+
assert module.q_proj_weight is not None and module.k_proj_weight is not None and module.v_proj_weight is not None
|
166 |
+
assert module.in_proj_weight is None
|
167 |
+
init_fn_(module.q_proj_weight)
|
168 |
+
init_fn_(module.k_proj_weight)
|
169 |
+
init_fn_(module.v_proj_weight)
|
170 |
+
|
171 |
+
# bias
|
172 |
+
if module.in_proj_bias is not None:
|
173 |
+
torch.nn.init.zeros_(module.in_proj_bias)
|
174 |
+
if module.bias_k is not None:
|
175 |
+
torch.nn.init.zeros_(module.bias_k)
|
176 |
+
if module.bias_v is not None:
|
177 |
+
torch.nn.init.zeros_(module.bias_v)
|
178 |
+
|
179 |
+
# out proj
|
180 |
+
init_fn_(module.out_proj.weight)
|
181 |
+
if init_div_is_residual is not False and getattr(
|
182 |
+
module.out_proj, '_is_residual', False):
|
183 |
+
with torch.no_grad():
|
184 |
+
module.out_proj.weight.div_(div_is_residual)
|
185 |
+
if module.out_proj.bias is not None:
|
186 |
+
torch.nn.init.zeros_(module.out_proj.bias)
|
187 |
+
|
188 |
+
else:
|
189 |
+
for _ in module.parameters(recurse=False):
|
190 |
+
# raise error if uninitialized module has any parameters
|
191 |
+
raise NotImplementedError(
|
192 |
+
f'{module.__class__.__name__} parameters are not initialized by param_init_fn.'
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
def _normal_init_(std, mean=0.0):
|
197 |
+
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
198 |
+
|
199 |
+
|
200 |
+
def _normal_param_init_fn_(
|
201 |
+
module: nn.Module,
|
202 |
+
std: float,
|
203 |
+
n_layers: int,
|
204 |
+
d_model: Optional[int] = None,
|
205 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
206 |
+
emb_init_std: Optional[float] = None,
|
207 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
208 |
+
verbose: int = 0,
|
209 |
+
**kwargs,
|
210 |
+
):
|
211 |
+
del kwargs # unused, just to capture any extra args from the config
|
212 |
+
init_fn_ = _normal_init_(std=std)
|
213 |
+
|
214 |
+
if verbose > 1:
|
215 |
+
warnings.warn(
|
216 |
+
f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
|
217 |
+
|
218 |
+
generic_param_init_fn_(
|
219 |
+
module=module,
|
220 |
+
init_fn_=init_fn_,
|
221 |
+
d_model=d_model,
|
222 |
+
n_layers=n_layers,
|
223 |
+
init_div_is_residual=init_div_is_residual,
|
224 |
+
emb_init_std=emb_init_std,
|
225 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
226 |
+
verbose=verbose,
|
227 |
+
)
|
228 |
+
|
229 |
+
|
230 |
+
def baseline_param_init_fn_(
|
231 |
+
module: nn.Module,
|
232 |
+
init_std: float,
|
233 |
+
n_layers: int,
|
234 |
+
d_model: Optional[int] = None,
|
235 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
236 |
+
emb_init_std: Optional[float] = None,
|
237 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
238 |
+
verbose: int = 0,
|
239 |
+
**kwargs,
|
240 |
+
):
|
241 |
+
del kwargs # unused, just to capture any extra args from the config
|
242 |
+
if init_std is None:
|
243 |
+
raise ValueError(
|
244 |
+
'You must set model.init_std to a float value to use the default initialization scheme.'
|
245 |
+
)
|
246 |
+
_normal_param_init_fn_(
|
247 |
+
module=module,
|
248 |
+
std=init_std,
|
249 |
+
d_model=d_model,
|
250 |
+
n_layers=n_layers,
|
251 |
+
init_div_is_residual=init_div_is_residual,
|
252 |
+
emb_init_std=emb_init_std,
|
253 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
254 |
+
verbose=verbose,
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
def small_param_init_fn_(
|
259 |
+
module: nn.Module,
|
260 |
+
n_layers: int,
|
261 |
+
d_model: int,
|
262 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
263 |
+
emb_init_std: Optional[float] = None,
|
264 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
265 |
+
verbose: int = 0,
|
266 |
+
**kwargs,
|
267 |
+
):
|
268 |
+
del kwargs # unused, just to capture any extra args from the config
|
269 |
+
# very close to kaiming normal
|
270 |
+
# from Transformers without Tears (2019) - Nguyen & Salazar
|
271 |
+
std = math.sqrt(2 / (5 * d_model))
|
272 |
+
_normal_param_init_fn_(
|
273 |
+
module=module,
|
274 |
+
std=std,
|
275 |
+
d_model=d_model,
|
276 |
+
n_layers=n_layers,
|
277 |
+
init_div_is_residual=init_div_is_residual,
|
278 |
+
emb_init_std=emb_init_std,
|
279 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
280 |
+
verbose=verbose,
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
def neox_param_init_fn_(
|
285 |
+
module: nn.Module,
|
286 |
+
n_layers: int,
|
287 |
+
d_model: int,
|
288 |
+
emb_init_std: Optional[float] = None,
|
289 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
290 |
+
verbose: int = 0,
|
291 |
+
**kwargs,
|
292 |
+
):
|
293 |
+
"""From section 2.3.1 of GPT-NeoX-20B:
|
294 |
+
|
295 |
+
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
296 |
+
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
|
297 |
+
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
|
298 |
+
"""
|
299 |
+
del kwargs # unused, just to capture any extra args from the config
|
300 |
+
residual_div = n_layers / math.sqrt(10) # small std / wang std
|
301 |
+
|
302 |
+
if verbose > 1:
|
303 |
+
warnings.warn(f'setting init_div_is_residual to {residual_div}')
|
304 |
+
|
305 |
+
small_param_init_fn_(
|
306 |
+
module=module,
|
307 |
+
d_model=d_model,
|
308 |
+
n_layers=n_layers,
|
309 |
+
init_div_is_residual=residual_div,
|
310 |
+
emb_init_std=emb_init_std,
|
311 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
312 |
+
verbose=verbose,
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
def kaiming_uniform_param_init_fn_(
|
317 |
+
module: nn.Module,
|
318 |
+
n_layers: int,
|
319 |
+
d_model: Optional[int] = None,
|
320 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
321 |
+
emb_init_std: Optional[float] = None,
|
322 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
323 |
+
init_gain: float = 0,
|
324 |
+
fan_mode: str = 'fan_in',
|
325 |
+
init_nonlinearity: str = 'leaky_relu',
|
326 |
+
verbose: int = 0,
|
327 |
+
**kwargs,
|
328 |
+
):
|
329 |
+
del kwargs # unused, just to capture any extra args from the config
|
330 |
+
|
331 |
+
if verbose > 1:
|
332 |
+
warnings.warn(
|
333 |
+
f'Using nn.init.kaiming_uniform_ init fn with parameters: ' +
|
334 |
+
f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}'
|
335 |
+
)
|
336 |
+
|
337 |
+
kaiming_uniform_ = partial(nn.init.kaiming_uniform_,
|
338 |
+
a=init_gain,
|
339 |
+
mode=fan_mode,
|
340 |
+
nonlinearity=init_nonlinearity)
|
341 |
+
|
342 |
+
generic_param_init_fn_(
|
343 |
+
module=module,
|
344 |
+
init_fn_=kaiming_uniform_,
|
345 |
+
d_model=d_model,
|
346 |
+
n_layers=n_layers,
|
347 |
+
init_div_is_residual=init_div_is_residual,
|
348 |
+
emb_init_std=emb_init_std,
|
349 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
350 |
+
verbose=verbose,
|
351 |
+
)
|
352 |
+
|
353 |
+
|
354 |
+
def kaiming_normal_param_init_fn_(
|
355 |
+
module: nn.Module,
|
356 |
+
n_layers: int,
|
357 |
+
d_model: Optional[int] = None,
|
358 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
359 |
+
emb_init_std: Optional[float] = None,
|
360 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
361 |
+
init_gain: float = 0,
|
362 |
+
fan_mode: str = 'fan_in',
|
363 |
+
init_nonlinearity: str = 'leaky_relu',
|
364 |
+
verbose: int = 0,
|
365 |
+
**kwargs,
|
366 |
+
):
|
367 |
+
del kwargs # unused, just to capture any extra args from the config
|
368 |
+
|
369 |
+
if verbose > 1:
|
370 |
+
warnings.warn(
|
371 |
+
f'Using nn.init.kaiming_normal_ init fn with parameters: ' +
|
372 |
+
f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}'
|
373 |
+
)
|
374 |
+
|
375 |
+
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_,
|
376 |
+
a=init_gain,
|
377 |
+
mode=fan_mode,
|
378 |
+
nonlinearity=init_nonlinearity)
|
379 |
+
|
380 |
+
generic_param_init_fn_(
|
381 |
+
module=module,
|
382 |
+
init_fn_=kaiming_normal_,
|
383 |
+
d_model=d_model,
|
384 |
+
n_layers=n_layers,
|
385 |
+
init_div_is_residual=init_div_is_residual,
|
386 |
+
emb_init_std=emb_init_std,
|
387 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
388 |
+
verbose=verbose,
|
389 |
+
)
|
390 |
+
|
391 |
+
|
392 |
+
def xavier_uniform_param_init_fn_(
|
393 |
+
module: nn.Module,
|
394 |
+
n_layers: int,
|
395 |
+
d_model: Optional[int] = None,
|
396 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
397 |
+
emb_init_std: Optional[float] = None,
|
398 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
399 |
+
init_gain: float = 0,
|
400 |
+
verbose: int = 0,
|
401 |
+
**kwargs,
|
402 |
+
):
|
403 |
+
del kwargs # unused, just to capture any extra args from the config
|
404 |
+
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
405 |
+
|
406 |
+
if verbose > 1:
|
407 |
+
warnings.warn(
|
408 |
+
f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' +
|
409 |
+
f'gain={init_gain}'
|
410 |
+
)
|
411 |
+
|
412 |
+
generic_param_init_fn_(
|
413 |
+
module=module,
|
414 |
+
init_fn_=xavier_uniform_,
|
415 |
+
d_model=d_model,
|
416 |
+
n_layers=n_layers,
|
417 |
+
init_div_is_residual=init_div_is_residual,
|
418 |
+
emb_init_std=emb_init_std,
|
419 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
420 |
+
verbose=verbose,
|
421 |
+
)
|
422 |
+
|
423 |
+
|
424 |
+
def xavier_normal_param_init_fn_(
|
425 |
+
module: nn.Module,
|
426 |
+
n_layers: int,
|
427 |
+
d_model: Optional[int] = None,
|
428 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
429 |
+
emb_init_std: Optional[float] = None,
|
430 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
431 |
+
init_gain: float = 0,
|
432 |
+
verbose: int = 0,
|
433 |
+
**kwargs,
|
434 |
+
):
|
435 |
+
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
436 |
+
|
437 |
+
if verbose > 1:
|
438 |
+
warnings.warn(
|
439 |
+
f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' +
|
440 |
+
f'gain={init_gain}'
|
441 |
+
)
|
442 |
+
|
443 |
+
generic_param_init_fn_(
|
444 |
+
module=module,
|
445 |
+
init_fn_=xavier_normal_,
|
446 |
+
d_model=d_model,
|
447 |
+
n_layers=n_layers,
|
448 |
+
init_div_is_residual=init_div_is_residual,
|
449 |
+
emb_init_std=emb_init_std,
|
450 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
451 |
+
verbose=verbose,
|
452 |
+
)
|
453 |
+
|
454 |
+
|
455 |
+
MODEL_INIT_REGISTRY = {
|
456 |
+
'default_': torch_default_param_init_fn_,
|
457 |
+
'baseline_': baseline_param_init_fn_,
|
458 |
+
'kaiming_uniform_': kaiming_uniform_param_init_fn_,
|
459 |
+
'kaiming_normal_': kaiming_normal_param_init_fn_,
|
460 |
+
'neox_init_': neox_param_init_fn_,
|
461 |
+
'small_init_': small_param_init_fn_,
|
462 |
+
'xavier_uniform_': xavier_uniform_param_init_fn_,
|
463 |
+
'xavier_normal_': xavier_normal_param_init_fn_,
|
464 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6516d02ef00bc903aad7d05dc35607cff7e4c7335d4f1bf424cdcb6695cd3e86
|
3 |
+
size 10402658381
|
replit_lm.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|