replit-code-v1-3b /
pirroh's picture
Convert ReplitLM to MPT (#16)
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
Forked from the file src/transformers/models/bert_generation/ from the HuggingFace Transformers library.
Tokenizer class for ReplitLM
Class is modified for compatibility with custom vocabulary and to achieve desired encode/decode behavior for Replit Code V1 3B model.
import os
import sentencepiece as spm
from shutil import copyfile
from transformers import PreTrainedTokenizer
from typing import Any, Dict, List, Optional, Tuple
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}
class ReplitLMTokenizer(PreTrainedTokenizer):
Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
vocab_file (`str`):
[SentencePiece]( file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
bos_token (`str`, *optional*, defaults to `None`):
The begin of sequence token.
unk_token (`str`, *optional*, defaults to `"<|unk|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<|pad|>"`):
The token used for padding, for example when batching sequences of different lengths.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece]( can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
vocab_files_names = VOCAB_FILES_NAMES
prefix_tokens: List[int] = []
model_input_names = ['input_ids', 'attention_mask']
def __init__(self, vocab_file, bos_token=None, eos_token='<|endoftext|>', unk_token='<|unk|>', pad_token='<|pad|>', sep_token=None, sp_model_kwargs: Optional[Dict[str, Any]]=None, **kwargs) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs)
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
def vocab_size(self):
return self.sp_model.get_piece_size()
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state['sp_model'] = None
return state
def __setstate__(self, d):
self.__dict__ = d
if not hasattr(self, 'sp_model_kwargs'):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.id_to_piece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
return self.sp_model.decode(tokens)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]:
if not os.path.isdir(save_directory):
raise ValueError(f'Vocabulary path ({save_directory}) should be a directory')
out_vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, 'wb') as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
return (out_vocab_file,)