|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Forked from the file src/transformers/models/bert_generation/tokenization_bert_generation.py from the HuggingFace Transformers library. |
|
Permalink: https://github.com/huggingface/transformers/blob/04ab5605fbb4ef207b10bf2772d88c53fc242e83/src/transformers/models/bert_generation/tokenization_bert_generation.py |
|
|
|
Tokenizer class for ReplitLM |
|
Class is modified for compatibility with custom vocabulary and to achieve desired encode/decode behavior for Replit Code V1 3B model. |
|
""" |
|
import os |
|
import sentencepiece as spm |
|
from shutil import copyfile |
|
from transformers import PreTrainedTokenizer |
|
from typing import Any, Dict, List, Optional, Tuple |
|
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'} |
|
|
|
class ReplitLMTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). |
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that |
|
contains the vocabulary necessary to instantiate a tokenizer. |
|
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): |
|
The end of sequence token. |
|
bos_token (`str`, *optional*, defaults to `None`): |
|
The begin of sequence token. |
|
unk_token (`str`, *optional*, defaults to `"<|unk|>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (`str`, *optional*, defaults to `"<|pad|>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
sp_model_kwargs (`dict`, *optional*): |
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for |
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, |
|
to set: |
|
- `enable_sampling`: Enable subword regularization. |
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. |
|
- `nbest_size = {0,1}`: No sampling is performed. |
|
- `nbest_size > 1`: samples from the nbest_size results. |
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) |
|
using forward-filtering-and-backward-sampling algorithm. |
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for |
|
BPE-dropout. |
|
""" |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
prefix_tokens: List[int] = [] |
|
model_input_names = ['input_ids', 'attention_mask'] |
|
|
|
def __init__(self, vocab_file, bos_token=None, eos_token='<|endoftext|>', unk_token='<|unk|>', pad_token='<|pad|>', sep_token=None, sp_model_kwargs: Optional[Dict[str, Any]]=None, **kwargs) -> None: |
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs) |
|
self.vocab_file = vocab_file |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.Load(vocab_file) |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.sp_model.get_piece_size() |
|
|
|
def get_vocab(self): |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state['sp_model'] = None |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
if not hasattr(self, 'sp_model_kwargs'): |
|
self.sp_model_kwargs = {} |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.load(self.vocab_file) |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
"""Take as input a string and return a list of strings (tokens) for words/sub-words""" |
|
return self.sp_model.encode(text, out_type=str) |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.sp_model.piece_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
token = self.sp_model.id_to_piece(index) |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
return self.sp_model.decode(tokens) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
raise ValueError(f'Vocabulary path ({save_directory}) should be a directory') |
|
out_vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) |
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, 'wb') as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
return (out_vocab_file,) |