|
import os
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import torch
|
|
|
|
|
|
model_path = "./tiny-gpt2-model/models--sshleifer--tiny-gpt2/snapshots/5f91d94bd9cd7190a9f3216ff93cd1dd95f2c7be"
|
|
tokenizer_path = "./tiny-gpt2-model/models--sshleifer--tiny-gpt2/snapshots/5f91d94bd9cd7190a9f3216ff93cd1dd95f2c7be"
|
|
|
|
|
|
if not os.path.exists(model_path) or not os.path.exists(tokenizer_path):
|
|
print(f"Error: Directory not found at {model_path}")
|
|
exit(1)
|
|
|
|
required_files = ["config.json", "pytorch_model.bin", "vocab.json", "merges.txt"]
|
|
for file in required_files:
|
|
if not os.path.exists(os.path.join(model_path, file)):
|
|
print(f"Error: {file} not found in {model_path}")
|
|
exit(1)
|
|
|
|
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, local_files_only=True)
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32, local_files_only=True)
|
|
except Exception as e:
|
|
print(f"Error loading model or tokenizer: {e}")
|
|
exit(1)
|
|
|
|
|
|
if tokenizer.pad_token_id is None:
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
|
|
model.eval()
|
|
|
|
|
|
prompt = "Once upon a time"
|
|
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to("cpu")
|
|
|
|
|
|
outputs = model.generate(
|
|
input_ids=inputs["input_ids"],
|
|
attention_mask=inputs["attention_mask"],
|
|
max_length=50,
|
|
num_return_sequences=1,
|
|
no_repeat_ngram_size=2,
|
|
do_sample=True,
|
|
top_k=50,
|
|
top_p=0.95,
|
|
temperature=0.7,
|
|
pad_token_id=tokenizer.eos_token_id
|
|
)
|
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
print("Generated Text:", generated_text) |