import os from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Define the model and tokenizer paths model_path = "./tiny-gpt2-model/models--sshleifer--tiny-gpt2/snapshots/5f91d94bd9cd7190a9f3216ff93cd1dd95f2c7be" tokenizer_path = "./tiny-gpt2-model/models--sshleifer--tiny-gpt2/snapshots/5f91d94bd9cd7190a9f3216ff93cd1dd95f2c7be" # Verify the directory contents if not os.path.exists(model_path) or not os.path.exists(tokenizer_path): print(f"Error: Directory not found at {model_path}") exit(1) required_files = ["config.json", "pytorch_model.bin", "vocab.json", "merges.txt"] for file in required_files: if not os.path.exists(os.path.join(model_path, file)): print(f"Error: {file} not found in {model_path}") exit(1) # Load the tokenizer and model try: tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, local_files_only=True) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32, local_files_only=True) except Exception as e: print(f"Error loading model or tokenizer: {e}") exit(1) # Set pad_token_id to eos_token_id if not already set if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id # Set model to evaluation mode model.eval() # Prepare input text prompt = "Once upon a time" inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to("cpu") # Generate text outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=50, num_return_sequences=1, no_repeat_ngram_size=2, do_sample=True, top_k=50, top_p=0.95, temperature=0.7, pad_token_id=tokenizer.eos_token_id ) # Decode and print the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print("Generated Text:", generated_text)