|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- fin |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: fin1 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: fin |
|
type: fin |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8315412186379928 |
|
- name: Recall |
|
type: recall |
|
value: 0.9243027888446215 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8754716981132076 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.985175455057234 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fin1 |
|
|
|
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the fin dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0778 |
|
- Precision: 0.8315 |
|
- Recall: 0.9243 |
|
- F1: 0.8755 |
|
- Accuracy: 0.9852 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 129 | 0.0860 | 0.8535 | 0.9283 | 0.8893 | 0.9904 | |
|
| No log | 2.0 | 258 | 0.1513 | 0.7993 | 0.9203 | 0.8556 | 0.9799 | |
|
| No log | 3.0 | 387 | 0.0977 | 0.8221 | 0.9203 | 0.8684 | 0.9831 | |
|
| 0.0017 | 4.0 | 516 | 0.0783 | 0.8286 | 0.9243 | 0.8738 | 0.9848 | |
|
| 0.0017 | 5.0 | 645 | 0.0778 | 0.8315 | 0.9243 | 0.8755 | 0.9852 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|