fin1 / README.md
redevaaa's picture
update model card README.md
fa6a88a
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - fin
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: fin1
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: fin
          type: fin
          config: default
          split: train
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.8315412186379928
          - name: Recall
            type: recall
            value: 0.9243027888446215
          - name: F1
            type: f1
            value: 0.8754716981132076
          - name: Accuracy
            type: accuracy
            value: 0.985175455057234

fin1

This model is a fine-tuned version of bert-base-cased on the fin dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0778
  • Precision: 0.8315
  • Recall: 0.9243
  • F1: 0.8755
  • Accuracy: 0.9852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 129 0.0860 0.8535 0.9283 0.8893 0.9904
No log 2.0 258 0.1513 0.7993 0.9203 0.8556 0.9799
No log 3.0 387 0.0977 0.8221 0.9203 0.8684 0.9831
0.0017 4.0 516 0.0783 0.8286 0.9243 0.8738 0.9848
0.0017 5.0 645 0.0778 0.8315 0.9243 0.8755 0.9852

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.7.1
  • Tokenizers 0.13.2