reddgr's picture
Update README.md
6e260ab verified
|
raw
history blame
2.2 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: tl-test-learn-prompt-classifier
    results: []

tl-test-learn-prompt-classifier

This model is a fine-tuned version of distilbert-base-uncased on the reddgr/tl-test-learn-prompts dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0794
  • Train Accuracy: 1.0
  • Validation Loss: 0.2381
  • Validation Accuracy: 0.9444
  • Epoch: 5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.6829 0.5808 0.6541 0.7639 0
0.6315 0.7784 0.5824 0.8472 1
0.4975 0.9222 0.4382 0.8889 2
0.3094 0.9521 0.3303 0.9028 3
0.1684 0.9820 0.2741 0.9028 4
0.0794 1.0 0.2381 0.9444 5

Framework versions

  • Transformers 4.46.2
  • TensorFlow 2.17.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3