File size: 17,577 Bytes
ac9a398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391228d
 
 
ac9a398
 
 
 
 
 
 
391228d
 
 
ac9a398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391228d
 
 
 
 
 
ac9a398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e586a4
ac9a398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7036b0
ac9a398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import collections.abc
import math
from collections import OrderedDict
from itertools import repeat
from typing import Callable, Optional, Sequence, Tuple

import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint

from transformers import AutoModel, PreTrainedModel

from .configuration_japanese_clip import JapaneseCLIPConfig


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm (with cast back to input dtype)."""

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        orig_dtype = x.dtype
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(dtype=orig_dtype)


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(torch.ones(dim) * init_values)
    
    def forward(self, x):
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class PatchDropout(nn.Module):
    """
    https://arxiv.org/abs/2212.00794
    """

    def __init__(self, prob, exclude_first_token=True):
        super().__init__()
        assert 0 <= prob < 1.0
        self.prob = prob
        self.exclude_first_token = exclude_first_token  # exclude CLS token

    def forward(self, x):
        if not self.training or self.prob == 0.:
            return x

        if self.exclude_first_token:
            cls_tokens, x = x[:, :1], x[:, 1:]
        else:
            cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])

        batch = x.size()[0]
        num_tokens = x.size()[1]

        batch_indices = torch.arange(batch)
        batch_indices = batch_indices[..., None]

        keep_prob = 1 - self.prob
        num_patches_keep = max(1, int(num_tokens * keep_prob))

        rand = torch.randn(batch, num_tokens)
        patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices

        x = x[batch_indices, patch_indices_keep]

        if self.exclude_first_token:
            x = torch.cat((cls_tokens, x), dim=1)

        return x


class AttentionalPooler(nn.Module):
    def __init__(
            self,
            d_model: int,
            context_dim: int,
            n_head: int = 8,
            n_queries: int = 256,
            norm_layer: Callable = LayerNorm
    ):
        super().__init__()
        self.query = nn.Parameter(torch.randn(n_queries, d_model))
        self.attn = nn.MultiheadAttention(
            d_model, n_head, kdim=context_dim, vdim=context_dim
        )
        self.ln_q = norm_layer(d_model)
        self.ln_k = norm_layer(context_dim)

    def forward(self, x: torch.Tensor):
        x = self.ln_k(x).permute(1, 0, 2)  # NLD -> LND
        N = x.shape[1]
        q = self.ln_q(self.query)
        out = self.attn(
            q.unsqueeze(1).expand(-1, N, -1), x, x, need_weights=False
        )[0]
        return out.permute(1, 0, 2)  # LND -> NLD


class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        d_model: int,
        n_head: int,
        mlp_ratio: float = 4.0,
        ls_init_value: Optional[float] = None,
        act_layer: Callable = nn.GELU,
        norm_layer: Callable = LayerNorm,
        is_cross_attention: bool = False,
    ):
        super().__init__()

        self.ln_1 = norm_layer(d_model)
        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
        if is_cross_attention:
            self.ln_1_kv = norm_layer(d_model)
        
        self.ln_2 = norm_layer(d_model)
        mlp_width = int(d_model * mlp_ratio)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, mlp_width)),
            ("gelu", act_layer()),
            ("c_proj", nn.Linear(mlp_width, d_model))
        ]))
        self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()

    def attention(
            self,
            q_x: torch.Tensor,
            k_x: Optional[torch.Tensor] = None,
            v_x: Optional[torch.Tensor] = None,
            attn_mask: Optional[torch.Tensor] = None,
    ):
        k_x = k_x if k_x is not None else q_x
        v_x = v_x if v_x is not None else q_x

        attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
        return self.attn(
            q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask
        )[0]

    def forward(
            self,
            q_x: torch.Tensor,
            k_x: Optional[torch.Tensor] = None,
            v_x: Optional[torch.Tensor] = None,
            attn_mask: Optional[torch.Tensor] = None,
    ):
        k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
        v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None

        x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask))
        x = x + self.ls_2(self.mlp(self.ln_2(x)))
        return x


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))
    return parse

to_2tuple = _ntuple(2)


def _expand_token(token, batch_size: int):
    return token.view(1, 1, -1).expand(batch_size, -1, -1)


class Transformer(nn.Module):
    def __init__(
            self,
            width: int,
            layers: int,
            heads: int,
            mlp_ratio: float = 4.0,
            ls_init_value: float = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
    ):
        super().__init__()
        self.width = width
        self.layers = layers
        self.grad_checkpointing = False

        self.resblocks = nn.ModuleList([
            ResidualAttentionBlock(
                width, 
                heads, 
                mlp_ratio, 
                ls_init_value=ls_init_value, 
                act_layer=act_layer, 
                norm_layer=norm_layer)
            for _ in range(layers)
        ])

    def get_cast_dtype(self) -> torch.dtype:
        if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
            return self.resblocks[0].mlp.c_fc.int8_original_dtype
        return self.resblocks[0].mlp.c_fc.weight.dtype

    def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        for r in self.resblocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
                x = checkpoint(r, x, None, None, attn_mask)
            else:
                x = r(x, attn_mask=attn_mask)
        return x


class JapaneseCLIPVisionTransformer(nn.Module):
    output_tokens: torch.jit.Final[bool]

    def __init__(
            self,
            image_size: int,
            patch_size: int,
            width: int,
            layers: int,
            heads: int,
            mlp_ratio: float,
            ls_init_value: float = None,
            attentional_pool: bool = False,
            attn_pooler_queries: int = 256,
            attn_pooler_heads: int = 8,
            output_dim: int = 512,
            patch_dropout: float = 0.,
            no_ln_pre: bool = False,
            pool_type: str = 'tok',
            final_ln_after_pool: bool = False,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            output_tokens: bool = False,
            **kwargs,
    ):
        super().__init__()
        assert pool_type in ('tok', 'avg', 'none')
        self.output_tokens = output_tokens
        image_height, image_width = self.image_size = to_2tuple(image_size)
        patch_height, patch_width = self.patch_size = to_2tuple(patch_size)
        self.grid_size = (image_height // patch_height, image_width // patch_width)
        self.final_ln_after_pool = final_ln_after_pool  # currently ignored w/ attn pool enabled
        self.output_dim = output_dim

        self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)

        # class embeddings and positional embeddings
        scale = width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(
            scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))

        # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
        self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()

        self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width)
        self.transformer = Transformer(
            width,
            layers,
            heads,
            mlp_ratio,
            ls_init_value=ls_init_value,
            act_layer=act_layer,
            norm_layer=norm_layer,
        )

        if attentional_pool:
            if isinstance(attentional_pool, str):
                self.attn_pool_type = attentional_pool
                self.pool_type = 'none'
                if attentional_pool in ('parallel', 'cascade'):
                    self.attn_pool = AttentionalPooler(
                        output_dim,
                        width,
                        n_head=attn_pooler_heads,
                        n_queries=attn_pooler_queries,
                    )
                    self.attn_pool_contrastive = AttentionalPooler(
                        output_dim,
                        width,
                        n_head=attn_pooler_heads,
                        n_queries=1,
                    )
                else:
                    assert False
            else:
                self.attn_pool_type = ''
                self.pool_type = pool_type
                self.attn_pool = AttentionalPooler(
                    output_dim,
                    width,
                    n_head=attn_pooler_heads,
                    n_queries=attn_pooler_queries,
                )
                self.attn_pool_contrastive = None
            pool_dim = output_dim
        else:
            self.attn_pool = None
            pool_dim = width
            self.pool_type = pool_type

        self.ln_post = norm_layer(pool_dim)
        self.proj = nn.Parameter(scale * torch.randn(pool_dim, output_dim))

        self.init_parameters()

    def lock(self, unlocked_groups=0, freeze_bn_stats=False):
        for param in self.parameters():
            param.requires_grad = False

        if unlocked_groups != 0:
            groups = [
                [
                    self.conv1,
                    self.class_embedding,
                    self.positional_embedding,
                    self.ln_pre,
                ],
                *self.transformer.resblocks[:-1],
                [
                    self.transformer.resblocks[-1],
                    self.ln_post,
                ],
                self.proj,
            ]

            def _unlock(x):
                if isinstance(x, Sequence):
                    for g in x:
                        _unlock(g)
                else:
                    if isinstance(x, torch.nn.Parameter):
                        x.requires_grad = True
                    else:
                        for p in x.parameters():
                            p.requires_grad = True

            _unlock(groups[-unlocked_groups:])

    def init_parameters(self):
        # FIXME OpenAI CLIP did not define an init for the VisualTransformer
        # TODO experiment if default PyTorch init, below, or alternate init is best.

        # nn.init.normal_(self.class_embedding, std=self.scale)
        # nn.init.normal_(self.positional_embedding, std=self.scale)
        #
        # proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
        # attn_std = self.transformer.width ** -0.5
        # fc_std = (2 * self.transformer.width) ** -0.5
        # for block in self.transformer.resblocks:
        #     nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
        #     nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
        #     nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
        #     nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
        #
        # if self.text_projection is not None:
        #     nn.init.normal_(self.text_projection, std=self.scale)
        pass

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.transformer.grad_checkpointing = enable

    def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.pool_type == 'avg':
            pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
        elif self.pool_type == 'tok':
            pooled, tokens = x[:, 0], x[:, 1:]
        else:
            pooled = tokens = x

        return pooled, tokens

    def forward(self, x: torch.Tensor):
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]

        # class embeddings and positional embeddings
        x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
        # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)

        x = self.patch_dropout(x)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        if self.attn_pool is not None:
            if self.attn_pool_contrastive is not None:
                # This is untested, WIP pooling that should match paper
                x = self.ln_post(x)  # TBD LN first or separate one after each pool?
                tokens = self.attn_pool(x)
                if self.attn_pool_type == 'parallel':
                    pooled = self.attn_pool_contrastive(x)
                else:
                    assert self.attn_pool_type == 'cascade'
                    pooled = self.attn_pool_contrastive(tokens)
            else:
                # this is the original OpenCLIP CoCa setup, does not match paper
                x = self.attn_pool(x)
                x = self.ln_post(x)
                pooled, tokens = self._global_pool(x)
        elif self.final_ln_after_pool:
            pooled, tokens = self._global_pool(x)
            pooled = self.ln_post(pooled)
        else:
            x = self.ln_post(x)
            pooled, tokens = self._global_pool(x)

        if self.proj is not None:
            pooled = pooled @ self.proj

        if self.output_tokens:
            return pooled, tokens
        
        return pooled


class JapaneseCLIPModel(PreTrainedModel):
    config_class = JapaneseCLIPConfig

    def __init__(self, config: JapaneseCLIPConfig):
        super().__init__(config)
        text_config = config.text_config
        vision_config = config.vision_config

        self.image_encoder = JapaneseCLIPVisionTransformer(
            **vision_config.to_dict()
        )
        self.text_encoder = AutoModel.from_config(text_config, add_pooling_layer=False)
        hidden_size = text_config.hidden_size
        self.projection_dim = self.image_encoder.output_dim
        self.text_projection = nn.Linear(hidden_size, self.projection_dim, bias=False)
        self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07))
        self.max_length = config.max_length
        self.position_ids = list(range(0, self.max_length))
    
    def _create_position_id_tensor(self, batch_size: int) -> torch.LongTensor:
        # rinna/japanese-roberta-base requires providing custom position ids
        # see: https://huggingface.co/rinna/japanese-roberta-base#note-3-provide-position_ids-as-an-argument-explicitly
        return torch.LongTensor([self.position_ids for _ in range(batch_size)])

    def get_image_features(self, pixel_values: torch.FloatTensor) -> torch.FloatTensor:
        return self.image_encoder(pixel_values)  # (batch_size, hidden_dim)

    def get_text_features(
        self, input_ids: torch.Tensor, position_ids: torch.Tensor = None
    ) -> torch.FloatTensor:
        if position_ids is None:
            position_ids = self._create_position_id_tensor(input_ids.size(0)).to(
                input_ids.device
            )
        last_hidden_state = self.text_encoder(
            input_ids=input_ids,
            position_ids=position_ids,
            output_hidden_states=True,
            return_dict=True,
        ).hidden_states[
            -1
        ]  # (batch_size, tokens, embed_dim)
        pooled_output = last_hidden_state[:, 0, :]  # (batch_size, embed_dim)
        return self.text_projection(pooled_output)  # (batch_size, hidden_dim)
    
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor = None,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
        """
        DDPを使うときはこのメソッドを経由しなければならない
        他のメソッドで得られた勾配はGPU間で同期されない
        """
        image_features = self.get_image_features(pixel_values)
        text_features = self.get_text_features(input_ids, position_ids)
        return image_features, text_features, self.logit_scale