File size: 36,732 Bytes
d60f838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7a2f7
d60f838
 
 
 
 
 
 
8d7a2f7
d60f838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fedd01a
 
d60f838
 
 
 
fedd01a
d60f838
 
fedd01a
 
d60f838
fedd01a
 
d60f838
 
fedd01a
 
 
d60f838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
#!/usr/bin/python
from transformers import Pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.tokenization_utils_base import TruncationStrategy
from torch import Tensor
import html.parser
import unicodedata
import sys, os
import re
import pickle
from tqdm.auto import tqdm
import operator
from datasets import load_dataset

def _create_modified_versions(entry=None):
    if entry is None:
        return []
    return _remove_diacritics(entry), _vu_vowel_to_v_vowel(entry), _vowel_u_to_vowel_v(entry), _consonant_v_to_consonant_u(entry), _y_to_i(entry), _i_to_y(entry), _eacute_to_e_s(entry), _final_eacute_to_e_z(entry), _egrave_to_eacute(entry), _vowelcircumflex_to_vowel_s(entry), _ce_to_ee(entry)

def _create_further_modified_versions(entry=None):
    if entry is None:
        return []
    return _s_to_f(entry), _ss_to_ff(entry), _s_to_ff(entry), _first_s_to_f(entry), _first_s_to_ff(entry), _last_s_to_f(entry), _last_s_to_ff(entry), _sit_to_st(entry), _ee_to_ce(entry), _z_to_s(entry)

def _remove_diacritics(s, allow_alter_length=True):
    # 1-1 replacements only (must not change the number of characters
    replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ"
    replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs"
    table = s.maketrans(replace_from, replace_into)
    s = s.translate(table)
    # n-m replacemenets
    if allow_alter_length:
        for before, after in [('œ', 'oe'), ('æ', 'ae'), ('ƣ', 'oi'), ('ij', 'ij'),
                              ('ȣ', 'ou'), ('Œ', 'OE'), ('Æ', 'AE'), ('Ƣ', 'OI'), ('IJ', 'IJ'), ('Ȣ', 'OU')]:
            s = s.replace(before, after)
        s = s.strip('-')
    return s

def _vu_vowel_to_v_vowel(s):
    s = re.sub('v([aeiou])' , r'vu\1', s)
    return s
    
def _vowel_u_to_vowel_v(s):
    s = re.sub('([aeiou])u' , r'\1v', s)
    return s
    
def _consonant_v_to_consonant_u(s):
    s = re.sub('([^aeiou])v' , r'\1u', s)
    return s
    
def _y_to_i(s):
    s = s.replace('y', 'i')
    return s

def _i_to_y(s):
    s = s.replace('i', 'y')
    return s

def _ss_to_ff(s):
    s = s.replace('ss', 'ff')
    return s

def _s_to_f(s):
    s = s.replace('s', 'f')
    return s

def _s_to_ff(s):
    s = s.replace('s', 'ff')
    return s
    
def _first_s_to_f(s):
    s = re.sub('s' , r'f', s, 1)
    return s

def _last_s_to_f(s):
    s = re.sub('^(.*)s' , r'\1f', s)
    return s
    
def _first_s_to_ff(s):
    s = re.sub('s' , r'ff', s, 1)
    return s
    
def _last_s_to_ff(s):
    s = re.sub('^(.*)s' , r'\1ff', s)
    return s
    
def _ee_to_ce(s):
    s = s.replace('ee', 'ce')
    return s

def _sit_to_st(s):
    s = s.replace('sit', 'st')
    return s

def _z_to_s(s):
    s = s.replace('z', 's')
    return s

def _ce_to_ee(s):
    s = s.replace('ce', 'ee')
    return s

def _eacute_to_e_s(s, allow_alter_length=True):
    if allow_alter_length:
        s = re.sub('é(.)' , r'es\1', s)
        s = re.sub('ê(.)' , r'es\1', s)
    return s
        
def _final_eacute_to_e_z(s, allow_alter_length=True):
    if allow_alter_length:
        s = re.sub('é$' , r'ez', s)
        s = re.sub('ê$' , r'ez', s)
    return s
        
def _egrave_to_eacute(s):
    s = re.sub('è(.)' , r'é\1', s)
    return s

def _vowelcircumflex_to_vowel_s(s, allow_alter_length=True):
    if allow_alter_length:
        for before, after in [('â', 'as'), ('ê', 'es'), ('î', 'is'), ('ô', 'os'), ('û', 'us')]:
            s = s.replace(before, after)
    return s


def basic_tokenise(string):
    # separate punctuation
    for char in r',.;?!:)("…-':
        string = re.sub('(?<! )' + re.escape(char) + '+', ' ' + char, string)
    for char in '\'"’':
        string = re.sub(char + '(?! )' , char + ' ', string)
    return string.strip()

def basic_tokenise_bs(string):
    # separate punctuation
    string = re.sub('(?<! )([,\.;\?!:\)\("…\'‘’”“«»\-])', r' \1', string)
    string = re.sub('([,\.;\?!:\)\("…\'‘’”“«»\-])(?! )' , r'\1 ', string)
    return string.strip()

def homogenise(sent, allow_alter_length=False):
    '''
    Homogenise an input sentence by lowercasing, removing diacritics, etc.
    If allow_alter_length is False, then only applies changes that do not alter
    the length of the original sentence (i.e. one-to-one modifications). If True,
    then also apply n-m replacements.
    '''
    sent = sent.lower()
    # n-m replacemenets
    if allow_alter_length:
        for before, after in [('ã', 'an'), ('xoe', 'œ')]:
            sent = sent.replace(before, after)
        sent = sent.strip('-')
    # 1-1 replacements only (must not change the number of characters
    replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ"
    replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs"
    table = sent.maketrans(replace_from, replace_into)
    return sent.translate(table)

def get_surrounding_punct(word):
    beginning_match = re.match("^(['\-]*)", word)
    beginning, end = '', ''
    if beginning_match:
        beginning = beginning_match.group(1)
    end_match = re.match("(['\-]*)$", word)
    if end_match:
        end = end_match.group(1)
    return beginning, end


def add_orig_punct(old_word, new_word):
    beginning, end = get_surrounding_punct(old_word)
    output = ''
    if beginning != None and not re.match("^"+re.escape(beginning), new_word):
        output += beginning
    if new_word != None:
        output += new_word
    if end != None and not re.match(re.escape(end)+"$", new_word):
        output += end
    return output
    
def get_caps(word):
    # remove any non-alphatic characters at begining or end
    word = word.strip("-' ")
    first, second, allcaps = False, False, False
    if len(word) > 0 and word[0].lower() != word[0]:
        first = True
    if len(word) > 1 and word[1].lower() != word[1]:
        second = True
    if word.upper() == word and word.lower() != word:
        allcaps = True
    return first, second, allcaps

def set_caps(word, first, second, allcaps):
    if word == None:
        return None
    if allcaps:
        return word.upper()
    elif first and second:
        return word[0].upper() + word[1].upper() + word[2:]
    elif first:
        if len(word) > 1:
            return word[0].upper() + word[1:]
        elif len(word) == 1:
            return word[0]
        else:
            return word
    elif second:
        if len(word) > 2:
            return word[0] + word[1].upper() + word[2:]
        elif len(word) > 1:
            return word[0] + word[1].upper() + word[2:]
        elif len(word) == 1:
            return word[0]
        else:
            return word
    else:
        return word


######## Edit distance functions #######
def _wedit_dist_init(len1, len2):
    lev = []
    for i in range(len1):
        lev.append([0] * len2)  # initialize 2D array to zero
    for i in range(len1):
        lev[i][0] = i  # column 0: 0,1,2,3,4,...
    for j in range(len2):
        lev[0][j] = j  # row 0: 0,1,2,3,4,...
    return lev


def _wedit_dist_step(
    lev, i, j, s1, s2, last_left, last_right, transpositions=False
):
    c1 = s1[i - 1]
    c2 = s2[j - 1]

    # skipping a character in s1
    a = lev[i - 1][j] + _wedit_dist_deletion_cost(c1,c2)
    # skipping a character in s2
    b = lev[i][j - 1] + _wedit_dist_insertion_cost(c1,c2)
    # substitution
    c = lev[i - 1][j - 1] + (_wedit_dist_substitution_cost(c1, c2) if c1 != c2 else 0)

    # pick the cheapest
    lev[i][j] = min(a, b, c)#, d)

def _wedit_dist_backtrace(lev):
    i, j = len(lev) - 1, len(lev[0]) - 1
    alignment = [(i, j, lev[i][j])]

    while (i, j) != (0, 0):
        directions = [
            (i - 1, j),  # skip s1
            (i, j - 1),  # skip s2
            (i - 1, j - 1),  # substitution
        ]

        direction_costs = (
            (lev[i][j] if (i >= 0 and j >= 0) else float("inf"), (i, j))
            for i, j in directions
        )
        _, (i, j) = min(direction_costs, key=operator.itemgetter(0))

        alignment.append((i, j, lev[i][j]))
    return list(reversed(alignment))

def _wedit_dist_substitution_cost(c1, c2):
    if c1 == ' ' and c2 != ' ':
        return 1000000
    if c2 == ' ' and c1 != ' ':
        return 30
    for c in ",.;-!?'":
        if c1 == c and c2 != c:
            return 20
        if c2 == c and c1 != c:
            return 20
    return 1

def _wedit_dist_deletion_cost(c1, c2):
    if c1 == ' ':
        return 2
    if c2 == ' ':
        return 1000000
    return 0.8

def _wedit_dist_insertion_cost(c1, c2):
    if c1 == ' ':
        return 1000000
    if c2 == ' ':
        return 2
    return 0.8

def wedit_distance_align(s1, s2):
    """
    Calculate the minimum Levenshtein weighted edit-distance based alignment
    mapping between two strings. The alignment finds the mapping
    from string s1 to s2 that minimizes the edit distance cost, where each
    operation is weighted by a dedicated weighting function.
    For example, mapping "rain" to "shine" would involve 2
    substitutions, 2 matches and an insertion resulting in
    the following mapping:
    [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (4, 5)]
    NB: (0, 0) is the start state without any letters associated
    See more: https://web.stanford.edu/class/cs124/lec/med.pdf
    In case of multiple valid minimum-distance alignments, the
    backtrace has the following operation precedence:
    1. Skip s1 character
    2. Skip s2 character
    3. Substitute s1 and s2 characters
    The backtrace is carried out in reverse string order.
    This function does not support transposition.
    :param s1, s2: The strings to be aligned
    :type s1: str
    :type s2: str
    :rtype: List[Tuple(int, int)]
    """
    # set up a 2-D array
    len1 = len(s1)
    len2 = len(s2)
    lev = _wedit_dist_init(len1 + 1, len2 + 1)

    # iterate over the array
    for i in range(len1):
        for j in range(len2):
            _wedit_dist_step(
                lev,
                i + 1,
                j + 1,
                s1,
                s2,
                0,
                0,
                transpositions=False,
            )

    # backtrace to find alignment
    alignment = _wedit_dist_backtrace(lev)
    return alignment

def _last_left_t_init(sigma):
    return {c: 0 for c in sigma}

def wedit_distance(s1, s2):
    """
    Calculate the Levenshtein weighted edit-distance between two strings.
    The weighted edit distance is the number of characters that need to be
    substituted, inserted, or deleted, to transform s1 into s2, weighted 
    by a dedicated weighting function.
    For example, transforming "rain" to "shine" requires three steps,
    consisting of two substitutions and one insertion:
    "rain" -> "sain" -> "shin" -> "shine".  These operations could have
    been done in other orders, but at least three steps are needed.

    Allows specifying the cost of substitution edits (e.g., "a" -> "b"),
    because sometimes it makes sense to assign greater penalties to
    substitutions.

    This also optionally allows transposition edits (e.g., "ab" -> "ba"),
    though this is disabled by default.

    :param s1, s2: The strings to be analysed
    :param transpositions: Whether to allow transposition edits
    :type s1: str
    :type s2: str
    :type substitution_cost: int
    :type transpositions: bool
    :rtype: int
    """
    # set up a 2-D array
    len1 = len(s1)
    len2 = len(s2)
    lev = _wedit_dist_init(len1 + 1, len2 + 1)

    # retrieve alphabet
    sigma = set()
    sigma.update(s1)
    sigma.update(s2)

    # set up table to remember positions of last seen occurrence in s1
    last_left_t = _last_left_t_init(sigma)

    # iterate over the array
    # i and j start from 1 and not 0 to stay close to the wikipedia pseudo-code
    # see https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
    for i in range(len1):
        last_right_buf = 0
        for j in range(len2):
            last_left = last_left_t[s2[j - 1]]
            last_right = last_right_buf
            if s1[i - 1] == s2[j - 1]:
                last_right_buf = j
            _wedit_dist_step(
                lev,
                i + 1,
                j + 1,
                s1,
                s2,
                last_left,
                last_right,
                transpositions=False,
            )
        last_left_t[s1[i - 1]] = i
    return lev[len1-1][len2-1]

def space_after(idx, sent):
    if idx < len(sent) -1 and sent[idx + 1] == ' ':
        return True
    return False

def space_before(idx, sent):
    if idx > 0 and sent[idx - 1] == ' ':
        return True
    return False

######## Normaliation pipeline #########
class NormalisationPipeline(Pipeline):

    def __init__(self, beam_size=5, batch_size=32, tokenise_func=None, cache_file=None, no_postproc_lex=False, 
                 no_post_clean=False, **kwargs):
        self.beam_size = beam_size
        # classic tokeniser function (used for alignments)
        if tokenise_func is not None:
            self.classic_tokenise = tokenise_func
        else:
            self.classic_tokenise = basic_tokenise

        self.no_post_clean = no_post_clean
        self.no_postproc_lex = no_postproc_lex
        # load lexicon
        if no_postproc_lex:
            self.orig_lefff_words, self.mapping_to_lefff, self.mapping_to_lefff2 = None, None, None
        else:
            self.orig_lefff_words, self.mapping_to_lefff, self.mapping_to_lefff2 = self.load_lexicon(cache_file=cache_file)
        super().__init__(**kwargs)


    def load_lexicon(self, cache_file=None):
        orig_lefff_words = []
        mapping_to_lefff = {}
        mapping_to_lefff2 = {}
        remove = set([])
        remove2 = set([])

        # load pickled version if there
        if cache_file is not None and os.path.exists(cache_file):
            return pickle.load(open(cache_file, 'rb'))
        dataset = load_dataset("sagot/lefff_morpho")

        for entry in set([x['form'].lower() for x in dataset['test']]):
            orig_lefff_words.append(entry)
            orig_lefff_words.append("-"+entry)
            for mod_entry in set(_create_modified_versions(entry)):
                if mod_entry in mapping_to_lefff and mapping_to_lefff[mod_entry] != entry:
                    remove.add(mod_entry)
                    if mod_entry != mod_entry.upper():
                        remove.add(mod_entry)
                if mod_entry not in mapping_to_lefff and mod_entry != entry:
                    mapping_to_lefff[mod_entry] = entry
                    if mod_entry != mod_entry.upper():
                        mapping_to_lefff2[mod_entry.upper()] = entry.upper()
                for mod_entry2 in set(_create_modified_versions(mod_entry)):
                    if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
                        remove2.add(mod_entry2)
                        if mod_entry2 != mod_entry2.upper():
                            remove2.add(mod_entry2)
                    if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
                        mapping_to_lefff2[mod_entry2] = entry
                        if mod_entry2 != mod_entry2.upper():
                            mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
                for mod_entry2 in set(_create_further_modified_versions(mod_entry)):
                    if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
                        remove2.add(mod_entry2)
                        if mod_entry2 != mod_entry2.upper():
                            remove2.add(mod_entry2)
                    if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
                        mapping_to_lefff2[mod_entry2] = entry
                        if mod_entry2 != mod_entry2.upper():
                            mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
            for mod_entry2 in set(_create_further_modified_versions(entry)):
                if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
                    remove2.add(mod_entry2)
                    if mod_entry2 != mod_entry2.upper():
                        remove2.add(mod_entry2)
                if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
                    mapping_to_lefff2[mod_entry2] = entry
                    if mod_entry2 != mod_entry2.upper():
                        mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
                    
        for mod_entry in list(mapping_to_lefff.keys()):
            if mod_entry != "":
                mapping_to_lefff["-"+mod_entry] = "-"+mapping_to_lefff[mod_entry]
        for mod_entry2 in list(mapping_to_lefff2.keys()):
            if mod_entry2 != "":
                mapping_to_lefff2["-"+mod_entry2] = "-"+mapping_to_lefff2[mod_entry2]

        for entry in remove:
            del mapping_to_lefff[entry]
        for entry in remove2:
            del mapping_to_lefff2[entry]

        if cache_file is not None:
            pickle.dump((orig_lefff_words, mapping_to_lefff, mapping_to_lefff2), open(cache_file, 'wb'))
        return orig_lefff_words, mapping_to_lefff, mapping_to_lefff2

    def _sanitize_parameters(self, clean_up_tokenisation_spaces=None, truncation=None, **generate_kwargs):
        preprocess_params = {}
        if truncation is not None:
            preprocess_params["truncation"] = truncation
        forward_params = generate_kwargs
        postprocess_params = {}
        if clean_up_tokenisation_spaces is not None:
            postprocess_params["clean_up_tokenisation_spaces"] = clean_up_tokenisation_spaces

        return preprocess_params, forward_params, postprocess_params


    def check_inputs(self, input_length: int, min_length: int, max_length: int):
        """
        Checks whether there might be something wrong with given input with regard to the model.
        """
        return True

    def make_printable(self, s):
        '''Replace non-printable characters in a string.'''
        return s.translate(NOPRINT_TRANS_TABLE)


    def normalise(self, line):
        for before, after in [('[«»\“\”]', '"'), ('[‘’]', "'"), (' +', ' '), ('\"+', '"'),
                              ("'+", "'"), ('^ *', ''), (' *$', '')]:
            line = re.sub(before, after, line)
        return line.strip() + ' </s>'
    
    def _parse_and_tokenise(self, *args, truncation):
        prefix = ""
        if isinstance(args[0], list):
            if self.tokenizer.pad_token_id is None:
                raise ValueError("Please make sure that the tokeniser has a pad_token_id when using a batch input")
            args = ([prefix + arg for arg in args[0]],)
            padding = True

        elif isinstance(args[0], str):
            args = (prefix + args[0],)
            padding = False
        else:
            raise ValueError(
                f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`"
            )
        inputs = [self.normalise(x) for x in args]
        inputs = self.tokenizer(inputs, padding=padding, truncation=truncation, return_tensors=self.framework)
        toks = []
        for tok_ids in inputs.input_ids:
            toks.append(" ".join(self.tokenizer.convert_ids_to_tokens(tok_ids)))
        # This is produced by tokenisers but is an invalid generate kwargs
        if "token_type_ids" in inputs:
            del inputs["token_type_ids"]
        return inputs
    
    def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs):
        inputs = self._parse_and_tokenise(inputs, truncation=truncation, **kwargs)
        return inputs

    def _forward(self, model_inputs, **generate_kwargs):
        in_b, input_length = model_inputs["input_ids"].shape
        generate_kwargs["min_length"] = generate_kwargs.get("min_length", self.model.config.min_length)
        generate_kwargs["max_length"] = generate_kwargs.get("max_length", self.model.config.max_length)
        generate_kwargs['num_beams'] = self.beam_size
        self.check_inputs(input_length, generate_kwargs["min_length"], generate_kwargs["max_length"])
        output_ids = self.model.generate(**model_inputs, **generate_kwargs)
        out_b = output_ids.shape[0]
        output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])
        return {"output_ids": output_ids}

    def postprocess(self, model_outputs, clean_up_tok_spaces=False):
        records = []
        for output_ids in model_outputs["output_ids"][0]:
            record = {"text": self.tokenizer.decode(output_ids, skip_special_tokens=True,
                                                    clean_up_tokenisation_spaces=clean_up_tok_spaces).strip()}
            records.append(record)
        return records

    def postprocess_correct_sent(self, alignment):
        output = []
        for i, (orig_word, pred_word, _) in enumerate(alignment):
            if orig_word != '':
                postproc_word = self.postprocess_correct_word(orig_word, pred_word, alignment)
                alignment[i] = (orig_word, postproc_word, -1) # replace prediction in the alignment
        return alignment

    def postprocess_correct_word(self, orig_word, pred_word, alignment):
        # pred_word exists in lexicon, take it
        orig_caps = get_caps(orig_word)
        if re.match("^[0-9]+$", orig_word) or re.match("^[XVUI]+$", orig_word):
            orig_word = orig_word.replace('U', 'V')
            return orig_word
        if pred_word.lower() in self.orig_lefff_words:
            return set_caps(pred_word, *orig_caps)
        # otherwise, if original word exists, take that
        if orig_word.lower() in self.orig_lefff_words:
            return orig_word

        pred_replacement = None
        # otherwise if pred word is in the lexicon with some changes, take that
        if pred_word != '' and pred_word != ' ':
            pred_replacement = self.mapping_to_lefff.get(pred_word, None)
        if pred_replacement is not None:
            return add_orig_punct(pred_word, set_caps(pred_replacement, *orig_caps))
        # otherwise if orig word is in the lexicon with some changes, take that
        orig_replacement = self.mapping_to_lefff.get(orig_word, None)
        if orig_replacement is not None:
            return add_orig_punct(pred_word, set_caps(orig_replacement, *orig_caps))

        # otherwise if pred word is in the lexicon with more changes, take that
        if pred_word != '' and pred_word != ' ':
            pred_replacement = self.mapping_to_lefff2.get(pred_word, None)
        if pred_replacement is not None:
            return add_orig_punct(pred_word, set_caps(pred_replacement, *orig_caps))
        # otherwise if orig word is in the lexicon with more changes, take that
        orig_replacement = self.mapping_to_lefff2.get(orig_word, None)
        if orig_replacement is not None:
            return add_orig_punct(pred_word, set_caps(orig_replacement, *orig_caps))

        if orig_word == pred_word:
            return orig_word
        if orig_word == " " and pred_word == "":
            return orig_word

        wed = wedit_distance(pred_word,orig_word)
        if wed > 2:
            return orig_word
        return add_orig_punct(pred_word, set_caps(pred_word, *orig_caps))


    def __call__(self, input_sents, **kwargs):
        r"""
        Generate the output texts using texts given as inputs.
        Args:
            args (`List[str]`):
                Input text for the encoder.
            apply_postprocessing (`Bool`):
                Apply postprocessing using the lexicon
            generate_kwargs:
                Additional keyword arguments to pass along to the generate method of the model (see the generate method
                corresponding to your framework [here](./model#generative-models)).
        Return:
            A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
            - **generated_text** (`str`, present when `return_text=True`) -- The generated text.
            - **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
              ids of the generated text.
        """
        result = super().__call__(input_sents, **kwargs)
            
        output = []
        for i in range(len(result)):
            input_sent, pred_sent = input_sents[i].strip(), result[i][0]['text'].strip()
            input_sent = input_sent.replace('ſ' , 's')

            # apply cleaning and get alignment (necessary for postprocessing w/ the lexicon)
            if not self.no_post_clean:
                pred_sent = self.post_cleaning(pred_sent)
            alignment, pred_sent_tok = self.align(input_sent, pred_sent)

            # apply postprocessing w/ the lexicon to the sentence (using the alignment)
            if not self.no_postproc_lex:
                alignment = self.postprocess_correct_sent(alignment)

            # get the predicted sentence from the alignment
            pred_sent = self.get_pred_from_alignment(alignment)

            # redo another round of cleaning and get the alignment again in case things have changed
            if not self.no_post_clean:
                pred_sent = self.post_cleaning(pred_sent)
                alignment, pred_sent_tok = self.align(input_sent, pred_sent)

            # get aligned character spans
            char_spans = self.get_char_idx_align(input_sent, pred_sent, alignment)
            output.append({'text': pred_sent, 'alignment': char_spans})
        return output

    def post_cleaning(self, s):
        s = s.replace(' ' , '')
        s = s.replace('ſ' , 's')
        s = s.replace('ß' , 'ss')
        s = s.replace('&' , 'et')
        s = re.sub('ẽ([mbp])' , r'em\1', s)
        s = s.replace('ẽ' , 'en')
        s = re.sub('ã([mbp])' , r'am\1', s)
        s = s.replace('ã' , 'an')
        s = re.sub('õ([mbp])' , r'om\1', s)
        s = s.replace('õ' , 'on')
        s = re.sub('ũ([mbp])' , r'um\1', s)
        s = s.replace('ũ' , 'un')
        return s

    def align(self, sent_ref, sent_pred):
        sent_ref_tok = self.classic_tokenise(re.sub('[  ]', '  ', sent_ref))
        sent_pred_tok = self.classic_tokenise(re.sub('[  ]', '  ', sent_pred))
        backpointers = wedit_distance_align(homogenise(sent_ref_tok), homogenise(sent_pred_tok))
        alignment, current_word, seen1, seen2, last_weight = [], ['', ''], [], [], 0
        for i_ref, i_pred, weight in backpointers:
            if i_ref == 0 and i_pred == 0:
                continue
            # next characters are both spaces -> add current word straight away
            if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' \
                and i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == ' ' \
                and i_ref not in seen1 and i_pred not in seen2:

                # if current word is empty -> insert a space on both sides
                if current_word[0] == '' and current_word[1] == '':
                    alignment.append((' ', ' ', weight-last_weight))
                # else add the current word to both sides
                else:
                    alignment.append((current_word[0], current_word[1], weight-last_weight))
                last_weight = weight
                current_word = ['', '']
                seen1.append(i_ref)
                seen2.append(i_pred)
            # if space in ref and dash in pred
            elif i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' \
                and i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == '-' \
                and i_ref not in seen1 and i_pred not in seen2 \
                and current_word[0] == '' and current_word[1] == '':
                alignment.append((' ', '', weight-last_weight))
                last_weight = weight
                current_word = ['', '-']
                seen1.append(i_ref)
                seen2.append(i_pred)
            else:
                end_space = '' #'░'
                # add new character to ref
                if i_ref <= len(sent_ref_tok) and i_ref not in seen1:
                    if i_ref > 0:
                        current_word[0] += sent_ref_tok[i_ref-1]
                        seen1.append(i_ref)
                # add new character to pred
                if i_pred <= len(sent_pred_tok) and i_pred not in seen2:
                    if i_pred > 0:
                        current_word[1] += sent_pred_tok[i_pred-1] if sent_pred_tok[i_pred-1] != ' ' else ' ' #'▁'
                        end_space = '' if space_after(i_pred, sent_pred_tok) else ''# '░'
                        seen2.append(i_pred)
                if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[0].strip() != '':
                    alignment.append((current_word[0].strip(), current_word[1].strip() + end_space, weight-last_weight))
                    last_weight = weight
                    current_word = ['', '']
                # space in ref but aligned to nothing in pred (under-translation)
                elif i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[1].strip() == '':
                    alignment.append((current_word[0], current_word[1], weight-last_weight))
                    last_weight = weight
                    current_word = ['', '']
                    seen1.append(i_ref)
                    seen2.append(i_pred)
        # final word
        alignment.append((current_word[0].strip(), current_word[1].strip(), weight-last_weight))
        # check that both strings are entirely covered
        recovered1 = re.sub(' +', ' ', ' '.join([x[0] for x in alignment]))
        recovered2 = re.sub(' +', ' ', ' '.join([x[1] for x in alignment]))

        assert re.sub('[  ]+', ' ', recovered1) == re.sub('[  ]+', ' ', sent_ref_tok), \
            '\n1: *' + re.sub('[  ]+', ' ', recovered1) + "*\n1: *" + re.sub('[  ]+', ' ', sent_ref_tok) + '*'
        assert re.sub('[░▁ ]+', '', recovered2) == re.sub('[▁ ]+', '', sent_pred_tok), \
            '\n2: ' + re.sub('[  ]+', ' ', recovered2) + "\n2: " + re.sub('[  ]+', ' ', sent_pred_tok)
        return alignment, sent_pred_tok

    def get_pred_from_alignment(self, alignment):
         return re.sub(' +', ' ', ''.join([x[1] if x[1] != '' else '\n' for x in alignment]).replace('\n', ''))
    
    def get_char_idx_align(self, sent_ref, sent_pred, alignment):
        covered_ref, covered_pred = 0, 0
        ref_chars = [i for i, character in enumerate(sent_ref)] + [len(sent_ref)]  #
        pred_chars = [i for i, character in enumerate(sent_pred)] + [len(sent_pred)]# if character not in [' ']]
        align_idx = []

        for a_ref, a_pred, _ in alignment:
            if a_ref == '' and a_pred == '':
                covered_pred += 1
                continue
            a_pred = re.sub(' +', ' ', a_pred).strip()
            span_ref = [ref_chars[covered_ref], ref_chars[covered_ref + len(a_ref)]]
            covered_ref += len(a_ref)
            span_pred = [pred_chars[covered_pred], pred_chars[covered_pred + len(a_pred)]]
            covered_pred += len(a_pred)
            align_idx.append((span_ref, span_pred))

        return align_idx
   
def normalise_text(list_sents, batch_size=32, beam_size=5, cache_file=None, no_postproc_lex=False, no_post_clean=False):
    tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation")
    model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation")
    normalisation_pipeline = NormalisationPipeline(model=model,
                                                   tokenizer=tokeniser,
                                                   batch_size=batch_size,
                                                   beam_size=beam_size,
                                                   cache_file=cache_file,
                                                   no_postproc_lex=no_postproc_lex,
                                                   no_post_clean=no_post_clean)
    normalised_outputs = normalisation_pipeline(list_sents)
    return normalised_outputs

def normalise_from_stdin(batch_size=32, beam_size=5, cache_file=None, no_postproc_lex=False, no_post_clean=False):
    tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation")
    model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation")
    normalisation_pipeline = NormalisationPipeline(model=model,
                                                   tokenizer=tokeniser,
                                                   batch_size=batch_size,
                                                   beam_size=beam_size,
                                                   cache_file=cache_file,
                                                   no_postproc_lex=no_postproc_lex,
                                                   no_post_clean=no_post_clean
                                                   )
    list_sents = []
    ex = ["7. Qu'vne force plus grande de ſi peu que l'on voudra, que celle auec laquelle l'eau de la hauteur de trente & vn pieds, tend à couler en bas, ſuffit pour faire admettre ce vuide apparent, & meſme ſi grãd que l'on voudra, c'eſt à dire, pour faire des-vnir les corps d'vn ſi grand interualle que l'on voudra, pourueu qu'il n'y ait point d'autre obſtacle à leur ſeparation ny à leur eſloignement, que l'horreur que la Nature a pour ce vuide apparent."]
    for sent in sys.stdin:
        list_sents.append(sent.strip())
    normalised_outputs = normalisation_pipeline(list_sents)
    for s, sent in enumerate(normalised_outputs):
        alignment=sent['alignment']

        print(sent['text'])
        # checking that the alignment makes sense
        #for b, a in alignment:
        #    print('input: ' + ''.join([list_sents[s][x] for x in range(b[0], max(len(b), b[1]))]) + '')
        #    print('pred: ' + ''.join([sent['text'][x] for x in range(a[0], max(len(a), a[1]))]) + '')

    return normalised_outputs
    
if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('-k', '--batch_size', type=int, default=32, help='Set the batch size for decoding')
    parser.add_argument('-b', '--beam_size', type=int, default=5, help='Set the beam size for decoding')
    parser.add_argument('-i', '--input_file', type=str, default=None, help='Input file. If None, read from STDIN')
    parser.add_argument('-c', '--cache_lexicon', type=str, default=None, help='Path to cache the lexicon file to speed up loading')
    parser.add_argument('-n', '--no_postproc_lex', default=False, action='store_true', help='Deactivate postprocessing to speed up normalisation, but this may degrade the output')
    parser.add_argument('-m', '--no_post_clean', default=False, action='store_true', help='Deactivate postprocessing to speed up normalisation, but this may degrade the output')
        
    args = parser.parse_args()

    if args.input_file is None:
         normalise_from_stdin(batch_size=args.batch_size,
                              beam_size=args.beam_size,
                              cache_file=args.cache_lexicon,
                              no_postproc_lex=args.no_postproc_lex,
                              no_post_clean=args.no_post_clean)
    else:
         list_sents = []
         with open(args.input_file) as fp:
              for line in fp:
                   list_sents.append(line.strip())
         output_sents = normalise_text(list_sents,
                                       batch_size=args.batch_size,
                                       beam_size=args.beam_size,
                                       cache_file=args.cache_lexicon,
                                       no_postproc_lex=args.no_postproc_lex,
                                       no_post_clean=args.no_post_clean)
         for output_sent in output_sents:
              print(output_sent['text'])