File size: 36,732 Bytes
d60f838 8d7a2f7 d60f838 8d7a2f7 d60f838 fedd01a d60f838 fedd01a d60f838 fedd01a d60f838 fedd01a d60f838 fedd01a d60f838 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
#!/usr/bin/python
from transformers import Pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.tokenization_utils_base import TruncationStrategy
from torch import Tensor
import html.parser
import unicodedata
import sys, os
import re
import pickle
from tqdm.auto import tqdm
import operator
from datasets import load_dataset
def _create_modified_versions(entry=None):
if entry is None:
return []
return _remove_diacritics(entry), _vu_vowel_to_v_vowel(entry), _vowel_u_to_vowel_v(entry), _consonant_v_to_consonant_u(entry), _y_to_i(entry), _i_to_y(entry), _eacute_to_e_s(entry), _final_eacute_to_e_z(entry), _egrave_to_eacute(entry), _vowelcircumflex_to_vowel_s(entry), _ce_to_ee(entry)
def _create_further_modified_versions(entry=None):
if entry is None:
return []
return _s_to_f(entry), _ss_to_ff(entry), _s_to_ff(entry), _first_s_to_f(entry), _first_s_to_ff(entry), _last_s_to_f(entry), _last_s_to_ff(entry), _sit_to_st(entry), _ee_to_ce(entry), _z_to_s(entry)
def _remove_diacritics(s, allow_alter_length=True):
# 1-1 replacements only (must not change the number of characters
replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ"
replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs"
table = s.maketrans(replace_from, replace_into)
s = s.translate(table)
# n-m replacemenets
if allow_alter_length:
for before, after in [('œ', 'oe'), ('æ', 'ae'), ('ƣ', 'oi'), ('ij', 'ij'),
('ȣ', 'ou'), ('Œ', 'OE'), ('Æ', 'AE'), ('Ƣ', 'OI'), ('IJ', 'IJ'), ('Ȣ', 'OU')]:
s = s.replace(before, after)
s = s.strip('-')
return s
def _vu_vowel_to_v_vowel(s):
s = re.sub('v([aeiou])' , r'vu\1', s)
return s
def _vowel_u_to_vowel_v(s):
s = re.sub('([aeiou])u' , r'\1v', s)
return s
def _consonant_v_to_consonant_u(s):
s = re.sub('([^aeiou])v' , r'\1u', s)
return s
def _y_to_i(s):
s = s.replace('y', 'i')
return s
def _i_to_y(s):
s = s.replace('i', 'y')
return s
def _ss_to_ff(s):
s = s.replace('ss', 'ff')
return s
def _s_to_f(s):
s = s.replace('s', 'f')
return s
def _s_to_ff(s):
s = s.replace('s', 'ff')
return s
def _first_s_to_f(s):
s = re.sub('s' , r'f', s, 1)
return s
def _last_s_to_f(s):
s = re.sub('^(.*)s' , r'\1f', s)
return s
def _first_s_to_ff(s):
s = re.sub('s' , r'ff', s, 1)
return s
def _last_s_to_ff(s):
s = re.sub('^(.*)s' , r'\1ff', s)
return s
def _ee_to_ce(s):
s = s.replace('ee', 'ce')
return s
def _sit_to_st(s):
s = s.replace('sit', 'st')
return s
def _z_to_s(s):
s = s.replace('z', 's')
return s
def _ce_to_ee(s):
s = s.replace('ce', 'ee')
return s
def _eacute_to_e_s(s, allow_alter_length=True):
if allow_alter_length:
s = re.sub('é(.)' , r'es\1', s)
s = re.sub('ê(.)' , r'es\1', s)
return s
def _final_eacute_to_e_z(s, allow_alter_length=True):
if allow_alter_length:
s = re.sub('é$' , r'ez', s)
s = re.sub('ê$' , r'ez', s)
return s
def _egrave_to_eacute(s):
s = re.sub('è(.)' , r'é\1', s)
return s
def _vowelcircumflex_to_vowel_s(s, allow_alter_length=True):
if allow_alter_length:
for before, after in [('â', 'as'), ('ê', 'es'), ('î', 'is'), ('ô', 'os'), ('û', 'us')]:
s = s.replace(before, after)
return s
def basic_tokenise(string):
# separate punctuation
for char in r',.;?!:)("…-':
string = re.sub('(?<! )' + re.escape(char) + '+', ' ' + char, string)
for char in '\'"’':
string = re.sub(char + '(?! )' , char + ' ', string)
return string.strip()
def basic_tokenise_bs(string):
# separate punctuation
string = re.sub('(?<! )([,\.;\?!:\)\("…\'‘’”“«»\-])', r' \1', string)
string = re.sub('([,\.;\?!:\)\("…\'‘’”“«»\-])(?! )' , r'\1 ', string)
return string.strip()
def homogenise(sent, allow_alter_length=False):
'''
Homogenise an input sentence by lowercasing, removing diacritics, etc.
If allow_alter_length is False, then only applies changes that do not alter
the length of the original sentence (i.e. one-to-one modifications). If True,
then also apply n-m replacements.
'''
sent = sent.lower()
# n-m replacemenets
if allow_alter_length:
for before, after in [('ã', 'an'), ('xoe', 'œ')]:
sent = sent.replace(before, after)
sent = sent.strip('-')
# 1-1 replacements only (must not change the number of characters
replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ"
replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs"
table = sent.maketrans(replace_from, replace_into)
return sent.translate(table)
def get_surrounding_punct(word):
beginning_match = re.match("^(['\-]*)", word)
beginning, end = '', ''
if beginning_match:
beginning = beginning_match.group(1)
end_match = re.match("(['\-]*)$", word)
if end_match:
end = end_match.group(1)
return beginning, end
def add_orig_punct(old_word, new_word):
beginning, end = get_surrounding_punct(old_word)
output = ''
if beginning != None and not re.match("^"+re.escape(beginning), new_word):
output += beginning
if new_word != None:
output += new_word
if end != None and not re.match(re.escape(end)+"$", new_word):
output += end
return output
def get_caps(word):
# remove any non-alphatic characters at begining or end
word = word.strip("-' ")
first, second, allcaps = False, False, False
if len(word) > 0 and word[0].lower() != word[0]:
first = True
if len(word) > 1 and word[1].lower() != word[1]:
second = True
if word.upper() == word and word.lower() != word:
allcaps = True
return first, second, allcaps
def set_caps(word, first, second, allcaps):
if word == None:
return None
if allcaps:
return word.upper()
elif first and second:
return word[0].upper() + word[1].upper() + word[2:]
elif first:
if len(word) > 1:
return word[0].upper() + word[1:]
elif len(word) == 1:
return word[0]
else:
return word
elif second:
if len(word) > 2:
return word[0] + word[1].upper() + word[2:]
elif len(word) > 1:
return word[0] + word[1].upper() + word[2:]
elif len(word) == 1:
return word[0]
else:
return word
else:
return word
######## Edit distance functions #######
def _wedit_dist_init(len1, len2):
lev = []
for i in range(len1):
lev.append([0] * len2) # initialize 2D array to zero
for i in range(len1):
lev[i][0] = i # column 0: 0,1,2,3,4,...
for j in range(len2):
lev[0][j] = j # row 0: 0,1,2,3,4,...
return lev
def _wedit_dist_step(
lev, i, j, s1, s2, last_left, last_right, transpositions=False
):
c1 = s1[i - 1]
c2 = s2[j - 1]
# skipping a character in s1
a = lev[i - 1][j] + _wedit_dist_deletion_cost(c1,c2)
# skipping a character in s2
b = lev[i][j - 1] + _wedit_dist_insertion_cost(c1,c2)
# substitution
c = lev[i - 1][j - 1] + (_wedit_dist_substitution_cost(c1, c2) if c1 != c2 else 0)
# pick the cheapest
lev[i][j] = min(a, b, c)#, d)
def _wedit_dist_backtrace(lev):
i, j = len(lev) - 1, len(lev[0]) - 1
alignment = [(i, j, lev[i][j])]
while (i, j) != (0, 0):
directions = [
(i - 1, j), # skip s1
(i, j - 1), # skip s2
(i - 1, j - 1), # substitution
]
direction_costs = (
(lev[i][j] if (i >= 0 and j >= 0) else float("inf"), (i, j))
for i, j in directions
)
_, (i, j) = min(direction_costs, key=operator.itemgetter(0))
alignment.append((i, j, lev[i][j]))
return list(reversed(alignment))
def _wedit_dist_substitution_cost(c1, c2):
if c1 == ' ' and c2 != ' ':
return 1000000
if c2 == ' ' and c1 != ' ':
return 30
for c in ",.;-!?'":
if c1 == c and c2 != c:
return 20
if c2 == c and c1 != c:
return 20
return 1
def _wedit_dist_deletion_cost(c1, c2):
if c1 == ' ':
return 2
if c2 == ' ':
return 1000000
return 0.8
def _wedit_dist_insertion_cost(c1, c2):
if c1 == ' ':
return 1000000
if c2 == ' ':
return 2
return 0.8
def wedit_distance_align(s1, s2):
"""
Calculate the minimum Levenshtein weighted edit-distance based alignment
mapping between two strings. The alignment finds the mapping
from string s1 to s2 that minimizes the edit distance cost, where each
operation is weighted by a dedicated weighting function.
For example, mapping "rain" to "shine" would involve 2
substitutions, 2 matches and an insertion resulting in
the following mapping:
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (4, 5)]
NB: (0, 0) is the start state without any letters associated
See more: https://web.stanford.edu/class/cs124/lec/med.pdf
In case of multiple valid minimum-distance alignments, the
backtrace has the following operation precedence:
1. Skip s1 character
2. Skip s2 character
3. Substitute s1 and s2 characters
The backtrace is carried out in reverse string order.
This function does not support transposition.
:param s1, s2: The strings to be aligned
:type s1: str
:type s2: str
:rtype: List[Tuple(int, int)]
"""
# set up a 2-D array
len1 = len(s1)
len2 = len(s2)
lev = _wedit_dist_init(len1 + 1, len2 + 1)
# iterate over the array
for i in range(len1):
for j in range(len2):
_wedit_dist_step(
lev,
i + 1,
j + 1,
s1,
s2,
0,
0,
transpositions=False,
)
# backtrace to find alignment
alignment = _wedit_dist_backtrace(lev)
return alignment
def _last_left_t_init(sigma):
return {c: 0 for c in sigma}
def wedit_distance(s1, s2):
"""
Calculate the Levenshtein weighted edit-distance between two strings.
The weighted edit distance is the number of characters that need to be
substituted, inserted, or deleted, to transform s1 into s2, weighted
by a dedicated weighting function.
For example, transforming "rain" to "shine" requires three steps,
consisting of two substitutions and one insertion:
"rain" -> "sain" -> "shin" -> "shine". These operations could have
been done in other orders, but at least three steps are needed.
Allows specifying the cost of substitution edits (e.g., "a" -> "b"),
because sometimes it makes sense to assign greater penalties to
substitutions.
This also optionally allows transposition edits (e.g., "ab" -> "ba"),
though this is disabled by default.
:param s1, s2: The strings to be analysed
:param transpositions: Whether to allow transposition edits
:type s1: str
:type s2: str
:type substitution_cost: int
:type transpositions: bool
:rtype: int
"""
# set up a 2-D array
len1 = len(s1)
len2 = len(s2)
lev = _wedit_dist_init(len1 + 1, len2 + 1)
# retrieve alphabet
sigma = set()
sigma.update(s1)
sigma.update(s2)
# set up table to remember positions of last seen occurrence in s1
last_left_t = _last_left_t_init(sigma)
# iterate over the array
# i and j start from 1 and not 0 to stay close to the wikipedia pseudo-code
# see https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
for i in range(len1):
last_right_buf = 0
for j in range(len2):
last_left = last_left_t[s2[j - 1]]
last_right = last_right_buf
if s1[i - 1] == s2[j - 1]:
last_right_buf = j
_wedit_dist_step(
lev,
i + 1,
j + 1,
s1,
s2,
last_left,
last_right,
transpositions=False,
)
last_left_t[s1[i - 1]] = i
return lev[len1-1][len2-1]
def space_after(idx, sent):
if idx < len(sent) -1 and sent[idx + 1] == ' ':
return True
return False
def space_before(idx, sent):
if idx > 0 and sent[idx - 1] == ' ':
return True
return False
######## Normaliation pipeline #########
class NormalisationPipeline(Pipeline):
def __init__(self, beam_size=5, batch_size=32, tokenise_func=None, cache_file=None, no_postproc_lex=False,
no_post_clean=False, **kwargs):
self.beam_size = beam_size
# classic tokeniser function (used for alignments)
if tokenise_func is not None:
self.classic_tokenise = tokenise_func
else:
self.classic_tokenise = basic_tokenise
self.no_post_clean = no_post_clean
self.no_postproc_lex = no_postproc_lex
# load lexicon
if no_postproc_lex:
self.orig_lefff_words, self.mapping_to_lefff, self.mapping_to_lefff2 = None, None, None
else:
self.orig_lefff_words, self.mapping_to_lefff, self.mapping_to_lefff2 = self.load_lexicon(cache_file=cache_file)
super().__init__(**kwargs)
def load_lexicon(self, cache_file=None):
orig_lefff_words = []
mapping_to_lefff = {}
mapping_to_lefff2 = {}
remove = set([])
remove2 = set([])
# load pickled version if there
if cache_file is not None and os.path.exists(cache_file):
return pickle.load(open(cache_file, 'rb'))
dataset = load_dataset("sagot/lefff_morpho")
for entry in set([x['form'].lower() for x in dataset['test']]):
orig_lefff_words.append(entry)
orig_lefff_words.append("-"+entry)
for mod_entry in set(_create_modified_versions(entry)):
if mod_entry in mapping_to_lefff and mapping_to_lefff[mod_entry] != entry:
remove.add(mod_entry)
if mod_entry != mod_entry.upper():
remove.add(mod_entry)
if mod_entry not in mapping_to_lefff and mod_entry != entry:
mapping_to_lefff[mod_entry] = entry
if mod_entry != mod_entry.upper():
mapping_to_lefff2[mod_entry.upper()] = entry.upper()
for mod_entry2 in set(_create_modified_versions(mod_entry)):
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
remove2.add(mod_entry2)
if mod_entry2 != mod_entry2.upper():
remove2.add(mod_entry2)
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
mapping_to_lefff2[mod_entry2] = entry
if mod_entry2 != mod_entry2.upper():
mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
for mod_entry2 in set(_create_further_modified_versions(mod_entry)):
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
remove2.add(mod_entry2)
if mod_entry2 != mod_entry2.upper():
remove2.add(mod_entry2)
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
mapping_to_lefff2[mod_entry2] = entry
if mod_entry2 != mod_entry2.upper():
mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
for mod_entry2 in set(_create_further_modified_versions(entry)):
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
remove2.add(mod_entry2)
if mod_entry2 != mod_entry2.upper():
remove2.add(mod_entry2)
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
mapping_to_lefff2[mod_entry2] = entry
if mod_entry2 != mod_entry2.upper():
mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
for mod_entry in list(mapping_to_lefff.keys()):
if mod_entry != "":
mapping_to_lefff["-"+mod_entry] = "-"+mapping_to_lefff[mod_entry]
for mod_entry2 in list(mapping_to_lefff2.keys()):
if mod_entry2 != "":
mapping_to_lefff2["-"+mod_entry2] = "-"+mapping_to_lefff2[mod_entry2]
for entry in remove:
del mapping_to_lefff[entry]
for entry in remove2:
del mapping_to_lefff2[entry]
if cache_file is not None:
pickle.dump((orig_lefff_words, mapping_to_lefff, mapping_to_lefff2), open(cache_file, 'wb'))
return orig_lefff_words, mapping_to_lefff, mapping_to_lefff2
def _sanitize_parameters(self, clean_up_tokenisation_spaces=None, truncation=None, **generate_kwargs):
preprocess_params = {}
if truncation is not None:
preprocess_params["truncation"] = truncation
forward_params = generate_kwargs
postprocess_params = {}
if clean_up_tokenisation_spaces is not None:
postprocess_params["clean_up_tokenisation_spaces"] = clean_up_tokenisation_spaces
return preprocess_params, forward_params, postprocess_params
def check_inputs(self, input_length: int, min_length: int, max_length: int):
"""
Checks whether there might be something wrong with given input with regard to the model.
"""
return True
def make_printable(self, s):
'''Replace non-printable characters in a string.'''
return s.translate(NOPRINT_TRANS_TABLE)
def normalise(self, line):
for before, after in [('[«»\“\”]', '"'), ('[‘’]', "'"), (' +', ' '), ('\"+', '"'),
("'+", "'"), ('^ *', ''), (' *$', '')]:
line = re.sub(before, after, line)
return line.strip() + ' </s>'
def _parse_and_tokenise(self, *args, truncation):
prefix = ""
if isinstance(args[0], list):
if self.tokenizer.pad_token_id is None:
raise ValueError("Please make sure that the tokeniser has a pad_token_id when using a batch input")
args = ([prefix + arg for arg in args[0]],)
padding = True
elif isinstance(args[0], str):
args = (prefix + args[0],)
padding = False
else:
raise ValueError(
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`"
)
inputs = [self.normalise(x) for x in args]
inputs = self.tokenizer(inputs, padding=padding, truncation=truncation, return_tensors=self.framework)
toks = []
for tok_ids in inputs.input_ids:
toks.append(" ".join(self.tokenizer.convert_ids_to_tokens(tok_ids)))
# This is produced by tokenisers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs):
inputs = self._parse_and_tokenise(inputs, truncation=truncation, **kwargs)
return inputs
def _forward(self, model_inputs, **generate_kwargs):
in_b, input_length = model_inputs["input_ids"].shape
generate_kwargs["min_length"] = generate_kwargs.get("min_length", self.model.config.min_length)
generate_kwargs["max_length"] = generate_kwargs.get("max_length", self.model.config.max_length)
generate_kwargs['num_beams'] = self.beam_size
self.check_inputs(input_length, generate_kwargs["min_length"], generate_kwargs["max_length"])
output_ids = self.model.generate(**model_inputs, **generate_kwargs)
out_b = output_ids.shape[0]
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])
return {"output_ids": output_ids}
def postprocess(self, model_outputs, clean_up_tok_spaces=False):
records = []
for output_ids in model_outputs["output_ids"][0]:
record = {"text": self.tokenizer.decode(output_ids, skip_special_tokens=True,
clean_up_tokenisation_spaces=clean_up_tok_spaces).strip()}
records.append(record)
return records
def postprocess_correct_sent(self, alignment):
output = []
for i, (orig_word, pred_word, _) in enumerate(alignment):
if orig_word != '':
postproc_word = self.postprocess_correct_word(orig_word, pred_word, alignment)
alignment[i] = (orig_word, postproc_word, -1) # replace prediction in the alignment
return alignment
def postprocess_correct_word(self, orig_word, pred_word, alignment):
# pred_word exists in lexicon, take it
orig_caps = get_caps(orig_word)
if re.match("^[0-9]+$", orig_word) or re.match("^[XVUI]+$", orig_word):
orig_word = orig_word.replace('U', 'V')
return orig_word
if pred_word.lower() in self.orig_lefff_words:
return set_caps(pred_word, *orig_caps)
# otherwise, if original word exists, take that
if orig_word.lower() in self.orig_lefff_words:
return orig_word
pred_replacement = None
# otherwise if pred word is in the lexicon with some changes, take that
if pred_word != '' and pred_word != ' ':
pred_replacement = self.mapping_to_lefff.get(pred_word, None)
if pred_replacement is not None:
return add_orig_punct(pred_word, set_caps(pred_replacement, *orig_caps))
# otherwise if orig word is in the lexicon with some changes, take that
orig_replacement = self.mapping_to_lefff.get(orig_word, None)
if orig_replacement is not None:
return add_orig_punct(pred_word, set_caps(orig_replacement, *orig_caps))
# otherwise if pred word is in the lexicon with more changes, take that
if pred_word != '' and pred_word != ' ':
pred_replacement = self.mapping_to_lefff2.get(pred_word, None)
if pred_replacement is not None:
return add_orig_punct(pred_word, set_caps(pred_replacement, *orig_caps))
# otherwise if orig word is in the lexicon with more changes, take that
orig_replacement = self.mapping_to_lefff2.get(orig_word, None)
if orig_replacement is not None:
return add_orig_punct(pred_word, set_caps(orig_replacement, *orig_caps))
if orig_word == pred_word:
return orig_word
if orig_word == " " and pred_word == "":
return orig_word
wed = wedit_distance(pred_word,orig_word)
if wed > 2:
return orig_word
return add_orig_punct(pred_word, set_caps(pred_word, *orig_caps))
def __call__(self, input_sents, **kwargs):
r"""
Generate the output texts using texts given as inputs.
Args:
args (`List[str]`):
Input text for the encoder.
apply_postprocessing (`Bool`):
Apply postprocessing using the lexicon
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **generated_text** (`str`, present when `return_text=True`) -- The generated text.
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the generated text.
"""
result = super().__call__(input_sents, **kwargs)
output = []
for i in range(len(result)):
input_sent, pred_sent = input_sents[i].strip(), result[i][0]['text'].strip()
input_sent = input_sent.replace('ſ' , 's')
# apply cleaning and get alignment (necessary for postprocessing w/ the lexicon)
if not self.no_post_clean:
pred_sent = self.post_cleaning(pred_sent)
alignment, pred_sent_tok = self.align(input_sent, pred_sent)
# apply postprocessing w/ the lexicon to the sentence (using the alignment)
if not self.no_postproc_lex:
alignment = self.postprocess_correct_sent(alignment)
# get the predicted sentence from the alignment
pred_sent = self.get_pred_from_alignment(alignment)
# redo another round of cleaning and get the alignment again in case things have changed
if not self.no_post_clean:
pred_sent = self.post_cleaning(pred_sent)
alignment, pred_sent_tok = self.align(input_sent, pred_sent)
# get aligned character spans
char_spans = self.get_char_idx_align(input_sent, pred_sent, alignment)
output.append({'text': pred_sent, 'alignment': char_spans})
return output
def post_cleaning(self, s):
s = s.replace(' ' , '')
s = s.replace('ſ' , 's')
s = s.replace('ß' , 'ss')
s = s.replace('&' , 'et')
s = re.sub('ẽ([mbp])' , r'em\1', s)
s = s.replace('ẽ' , 'en')
s = re.sub('ã([mbp])' , r'am\1', s)
s = s.replace('ã' , 'an')
s = re.sub('õ([mbp])' , r'om\1', s)
s = s.replace('õ' , 'on')
s = re.sub('ũ([mbp])' , r'um\1', s)
s = s.replace('ũ' , 'un')
return s
def align(self, sent_ref, sent_pred):
sent_ref_tok = self.classic_tokenise(re.sub('[ ]', ' ', sent_ref))
sent_pred_tok = self.classic_tokenise(re.sub('[ ]', ' ', sent_pred))
backpointers = wedit_distance_align(homogenise(sent_ref_tok), homogenise(sent_pred_tok))
alignment, current_word, seen1, seen2, last_weight = [], ['', ''], [], [], 0
for i_ref, i_pred, weight in backpointers:
if i_ref == 0 and i_pred == 0:
continue
# next characters are both spaces -> add current word straight away
if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' \
and i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == ' ' \
and i_ref not in seen1 and i_pred not in seen2:
# if current word is empty -> insert a space on both sides
if current_word[0] == '' and current_word[1] == '':
alignment.append((' ', ' ', weight-last_weight))
# else add the current word to both sides
else:
alignment.append((current_word[0], current_word[1], weight-last_weight))
last_weight = weight
current_word = ['', '']
seen1.append(i_ref)
seen2.append(i_pred)
# if space in ref and dash in pred
elif i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' \
and i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == '-' \
and i_ref not in seen1 and i_pred not in seen2 \
and current_word[0] == '' and current_word[1] == '':
alignment.append((' ', '', weight-last_weight))
last_weight = weight
current_word = ['', '-']
seen1.append(i_ref)
seen2.append(i_pred)
else:
end_space = '' #'░'
# add new character to ref
if i_ref <= len(sent_ref_tok) and i_ref not in seen1:
if i_ref > 0:
current_word[0] += sent_ref_tok[i_ref-1]
seen1.append(i_ref)
# add new character to pred
if i_pred <= len(sent_pred_tok) and i_pred not in seen2:
if i_pred > 0:
current_word[1] += sent_pred_tok[i_pred-1] if sent_pred_tok[i_pred-1] != ' ' else ' ' #'▁'
end_space = '' if space_after(i_pred, sent_pred_tok) else ''# '░'
seen2.append(i_pred)
if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[0].strip() != '':
alignment.append((current_word[0].strip(), current_word[1].strip() + end_space, weight-last_weight))
last_weight = weight
current_word = ['', '']
# space in ref but aligned to nothing in pred (under-translation)
elif i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[1].strip() == '':
alignment.append((current_word[0], current_word[1], weight-last_weight))
last_weight = weight
current_word = ['', '']
seen1.append(i_ref)
seen2.append(i_pred)
# final word
alignment.append((current_word[0].strip(), current_word[1].strip(), weight-last_weight))
# check that both strings are entirely covered
recovered1 = re.sub(' +', ' ', ' '.join([x[0] for x in alignment]))
recovered2 = re.sub(' +', ' ', ' '.join([x[1] for x in alignment]))
assert re.sub('[ ]+', ' ', recovered1) == re.sub('[ ]+', ' ', sent_ref_tok), \
'\n1: *' + re.sub('[ ]+', ' ', recovered1) + "*\n1: *" + re.sub('[ ]+', ' ', sent_ref_tok) + '*'
assert re.sub('[░▁ ]+', '', recovered2) == re.sub('[▁ ]+', '', sent_pred_tok), \
'\n2: ' + re.sub('[ ]+', ' ', recovered2) + "\n2: " + re.sub('[ ]+', ' ', sent_pred_tok)
return alignment, sent_pred_tok
def get_pred_from_alignment(self, alignment):
return re.sub(' +', ' ', ''.join([x[1] if x[1] != '' else '\n' for x in alignment]).replace('\n', ''))
def get_char_idx_align(self, sent_ref, sent_pred, alignment):
covered_ref, covered_pred = 0, 0
ref_chars = [i for i, character in enumerate(sent_ref)] + [len(sent_ref)] #
pred_chars = [i for i, character in enumerate(sent_pred)] + [len(sent_pred)]# if character not in [' ']]
align_idx = []
for a_ref, a_pred, _ in alignment:
if a_ref == '' and a_pred == '':
covered_pred += 1
continue
a_pred = re.sub(' +', ' ', a_pred).strip()
span_ref = [ref_chars[covered_ref], ref_chars[covered_ref + len(a_ref)]]
covered_ref += len(a_ref)
span_pred = [pred_chars[covered_pred], pred_chars[covered_pred + len(a_pred)]]
covered_pred += len(a_pred)
align_idx.append((span_ref, span_pred))
return align_idx
def normalise_text(list_sents, batch_size=32, beam_size=5, cache_file=None, no_postproc_lex=False, no_post_clean=False):
tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation")
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation")
normalisation_pipeline = NormalisationPipeline(model=model,
tokenizer=tokeniser,
batch_size=batch_size,
beam_size=beam_size,
cache_file=cache_file,
no_postproc_lex=no_postproc_lex,
no_post_clean=no_post_clean)
normalised_outputs = normalisation_pipeline(list_sents)
return normalised_outputs
def normalise_from_stdin(batch_size=32, beam_size=5, cache_file=None, no_postproc_lex=False, no_post_clean=False):
tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation")
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation")
normalisation_pipeline = NormalisationPipeline(model=model,
tokenizer=tokeniser,
batch_size=batch_size,
beam_size=beam_size,
cache_file=cache_file,
no_postproc_lex=no_postproc_lex,
no_post_clean=no_post_clean
)
list_sents = []
ex = ["7. Qu'vne force plus grande de ſi peu que l'on voudra, que celle auec laquelle l'eau de la hauteur de trente & vn pieds, tend à couler en bas, ſuffit pour faire admettre ce vuide apparent, & meſme ſi grãd que l'on voudra, c'eſt à dire, pour faire des-vnir les corps d'vn ſi grand interualle que l'on voudra, pourueu qu'il n'y ait point d'autre obſtacle à leur ſeparation ny à leur eſloignement, que l'horreur que la Nature a pour ce vuide apparent."]
for sent in sys.stdin:
list_sents.append(sent.strip())
normalised_outputs = normalisation_pipeline(list_sents)
for s, sent in enumerate(normalised_outputs):
alignment=sent['alignment']
print(sent['text'])
# checking that the alignment makes sense
#for b, a in alignment:
# print('input: ' + ''.join([list_sents[s][x] for x in range(b[0], max(len(b), b[1]))]) + '')
# print('pred: ' + ''.join([sent['text'][x] for x in range(a[0], max(len(a), a[1]))]) + '')
return normalised_outputs
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-k', '--batch_size', type=int, default=32, help='Set the batch size for decoding')
parser.add_argument('-b', '--beam_size', type=int, default=5, help='Set the beam size for decoding')
parser.add_argument('-i', '--input_file', type=str, default=None, help='Input file. If None, read from STDIN')
parser.add_argument('-c', '--cache_lexicon', type=str, default=None, help='Path to cache the lexicon file to speed up loading')
parser.add_argument('-n', '--no_postproc_lex', default=False, action='store_true', help='Deactivate postprocessing to speed up normalisation, but this may degrade the output')
parser.add_argument('-m', '--no_post_clean', default=False, action='store_true', help='Deactivate postprocessing to speed up normalisation, but this may degrade the output')
args = parser.parse_args()
if args.input_file is None:
normalise_from_stdin(batch_size=args.batch_size,
beam_size=args.beam_size,
cache_file=args.cache_lexicon,
no_postproc_lex=args.no_postproc_lex,
no_post_clean=args.no_post_clean)
else:
list_sents = []
with open(args.input_file) as fp:
for line in fp:
list_sents.append(line.strip())
output_sents = normalise_text(list_sents,
batch_size=args.batch_size,
beam_size=args.beam_size,
cache_file=args.cache_lexicon,
no_postproc_lex=args.no_postproc_lex,
no_post_clean=args.no_post_clean)
for output_sent in output_sents:
print(output_sent['text'])
|