File size: 1,714 Bytes
7a634b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: xlnet-base-cased-tweets
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-base-cased-tweets
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2094
- Accuracy: 0.9236
- F1: 0.9553
- Precision: 0.9531
- Recall: 0.9575
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.2551 | 1.0 | 642 | 0.2172 | 0.9037 | 0.9443 | 0.9311 | 0.9579 |
| 0.1981 | 2.0 | 1284 | 0.2366 | 0.9135 | 0.9500 | 0.9349 | 0.9657 |
| 0.1513 | 3.0 | 1926 | 0.2094 | 0.9236 | 0.9553 | 0.9531 | 0.9575 |
### Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|