File size: 2,438 Bytes
1c41ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Plant-gob-roberta-base-bne-capitel-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2002
type: conll2002
config: es
split: validation
args: es
metrics:
- name: Precision
type: precision
value: 0.8627583108715184
- name: Recall
type: recall
value: 0.8825827205882353
- name: F1
type: f1
value: 0.872557928214448
- name: Accuracy
type: accuracy
value: 0.9784878927600843
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Plant-gob-roberta-base-bne-capitel-ner
This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1071
- Precision: 0.8628
- Recall: 0.8826
- F1: 0.8726
- Accuracy: 0.9785
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0681 | 1.0 | 521 | 0.0818 | 0.8645 | 0.8842 | 0.8742 | 0.9789 |
| 0.0313 | 2.0 | 1042 | 0.0841 | 0.8516 | 0.8768 | 0.8640 | 0.9779 |
| 0.0179 | 3.0 | 1563 | 0.0979 | 0.8584 | 0.8773 | 0.8677 | 0.9781 |
| 0.0091 | 4.0 | 2084 | 0.0996 | 0.8600 | 0.8819 | 0.8708 | 0.9784 |
| 0.0068 | 5.0 | 2605 | 0.1071 | 0.8628 | 0.8826 | 0.8726 | 0.9785 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|